Skip to main content

Advertisement

Log in

Simvastatin Enhances Spatial Memory and Long-Term Potentiation in Hippocampal CA1 via Upregulation of α7 Nicotinic Acetylcholine Receptor

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Simvastatin (SV) has been reported to improve cognitive deficits in Alzheimer’s disease. Here, we show that chronic administration of SV (20 mg/kg) for 30 days in adult mice (SV mice) enhanced spatial cognitive performance as assessed by Morris water maze and Y-maze. To explore mechanisms underlying SV-enhanced spatial cognition, we further examined synaptic properties and long-term potentiation (LTP) in hippocampal CA1, hippocampal α7nAChR expression, and Akt and ERK2 phosphorylation. In comparison with controls, the SV administration caused increase in presynaptic glutamate release and amplitude of NMDAr-dependent LTP (LTP-augmentation), and decrease in threshold of NMDAr-independent LTP induction (LTP-facilitation). The supplement of isoprenoid farnesyl pyrophosphate (FPP) by applying farnesol (FOH) could abolish the spatial cognitive potentiation, increased glutamate release, and LTP-augmentation/facilitation in SV mice. Expression of α7nAChR, but not α4β2nAChR, was increased in hippocampal pyramidal cells of SV mice with the reduction of transcription factor AP-2α, which were abolished by FOH. Levels of Akt and ERK2 phosphorylation in SV mice were elevated, which were suppressed by FOH or α7nAChR antagonist methyl-lycaconitine (MLA). In hippocampal slices obtained from SV mice, acute perfusion of MLA blocked the increased glutamate release, whereas FOH, PI3K inhibitor LY294002, or MEK inhibitor U0126 could not. In the slices of SV mice, the perfusion of MLA or U0126, but not FOH, abolished the LTP-augmentation and LTP-facilitation. By contrast, LY294002 prevented the LTP-facilitation but failed to affect the LTP-augmentation. The findings indicate that the administration of SV through reducing FPP increases α7nAChR expression and α7nAChR-related Akt and ERK2 phosphorylation, leading to LTP enhancement and spatial cognitive potentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fonseca AC, Resende R, Oliveira CR, Pereira CM (2010) Cholesterol and statins in Alzheimer's disease: current controversies. Exp Neurol 223(2):282–293. doi:10.1016/j.expneurol.2009.09.013

    Article  CAS  PubMed  Google Scholar 

  2. Williams PT (2015) Lower risk of Alzheimer's disease mortality with exercise, statin, and fruit intake. J Alzheimers Dis 44(4):1121–1129. doi:10.3233/JAD-141929

    CAS  PubMed  Google Scholar 

  3. Chou CY, Chou YC, Chou YJ, Yang YF, Huang N (2014) Statin use and incident dementia: a nationwide cohort study of Taiwan. Int J Cardiol 173(2):305–310. doi:10.1016/j.ijcard.2014.03.018

    Article  PubMed  Google Scholar 

  4. Simons M, Schwarzler F, Lutjohann D, von Bergmann K, Beyreuther K, Dichgans J, Wormstall H, Hartmann T et al (2002) Treatment with simvastatin in normocholesterolemic patients with Alzheimer's disease: A 26-week randomized, placebo-controlled, double-blind trial. Ann Neurol 52(3):346–350. doi:10.1002/ana.10292

    Article  CAS  PubMed  Google Scholar 

  5. Tong XK, Lecrux C, Rosa-Neto P, Hamel E (2012) Age-dependent rescue by simvastatin of Alzheimer's disease cerebrovascular and memory deficits. J Neurosci 32(14):4705–4715. doi:10.1523/JNEUROSCI.0169-12.2012

    Article  CAS  PubMed  Google Scholar 

  6. Li L, Cao D, Kim H, Lester R, Fukuchi K (2006) Simvastatin enhances learning and memory independent of amyloid load in mice. Ann Neurol 60(6):729–739. doi:10.1002/ana.21053

    Article  CAS  PubMed  Google Scholar 

  7. Roensch J, Crisby M, Nordberg A, Xiao Y, Zhang LJ, Guan ZZ (2007) Effects of statins on alpha7 nicotinic receptor, cholinesterase and alpha-form of secreted amyloid precursor peptide in SH-SY5Y cells. Neurochem Int 50(6):800–806. doi:10.1016/j.neuint.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  8. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39. doi:10.1038/361031a0

    Article  CAS  PubMed  Google Scholar 

  9. Chen L, Yamada K, Nabeshima T, Sokabe M (2006) alpha7 Nicotinic acetylcholine receptor as a target to rescue deficit in hippocampal LTP induction in beta-amyloid infused rats. Neuropharmacology 50(2):254–268. doi:10.1016/j.neuropharm.2005.09.018

    Article  CAS  PubMed  Google Scholar 

  10. Leiser SC, Bowlby MR, Comery TA, Dunlop J (2009) A cog in cognition: how the alpha 7 nicotinic acetylcholine receptor is geared towards improving cognitive deficits. Pharmacol Ther 122(3):302–311. doi:10.1016/j.pharmthera.2009.03.009

    Article  CAS  PubMed  Google Scholar 

  11. Zhi WH, Zeng YY, Lu ZH, Qu WJ, Chen WX, Chen L, Chen L (2014) Simvastatin exerts antiamnesic effect in Abeta25-35 -injected mice. CNS Neurosci Ther 20(3):218–226. doi:10.1111/cns.12190

    Article  CAS  PubMed  Google Scholar 

  12. Skaletz-Rorowski A, Lutchman M, Kureishi Y, Lefer DJ, Faust JR, Walsh K (2003) HMG-CoA reductase inhibitors promote cholesterol-dependent Akt/PKB translocation to membrane domains in endothelial cells. Cardiovasc Res 57(1):253–264

    Article  CAS  PubMed  Google Scholar 

  13. Nakao T, Shiota M, Tatemoto Y, Izumi Y, Iwao H (2007) Pravastatin induces rat aortic endothelial cell proliferation and migration via activation of PI3K/Akt/mTOR/p70 S6 kinase signaling. J Pharmacol Sci 105(4):334–341

    Article  CAS  PubMed  Google Scholar 

  14. Mans RA, Chowdhury N, Cao D, McMahon LL, Li L (2010) Simvastatin enhances hippocampal long-term potentiation in C57BL/6 mice. Neuroscience 166(2):435–444. doi:10.1016/j.neuroscience.2009.12.062

    Article  CAS  PubMed  Google Scholar 

  15. Veyrac A, Besnard A, Caboche J, Davis S, Laroche S (2014) The transcription factor Zif268/Egr1, brain plasticity, and memory. Prog Mol Biol Transl Sci 122:89–129. doi:10.1016/B978-0-12-420170-5.00004-0

    Article  CAS  PubMed  Google Scholar 

  16. Endo A (2004) The discovery and development of HMG-CoA reductase inhibitors. 1992. Atheroscler Suppl 5(3):67–80. doi:10.1016/j.atherosclerosissup.2004.08.026

    Article  CAS  PubMed  Google Scholar 

  17. McTaggart SJ (2006) Isoprenylated proteins. Cell Mol Life Sci 63(3):255–267. doi:10.1007/s00018-005-5298-6

    Article  CAS  PubMed  Google Scholar 

  18. Eckert GP, Hooff GP, Strandjord DM, Igbavboa U, Volmer DA, Muller WE, Wood WG (2009) Regulation of the brain isoprenoids farnesyl- and geranylgeranylpyrophosphate is altered in male Alzheimer patients. Neurobiol Dis 35(2):251–257. doi:10.1016/j.nbd.2009.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li W, Cui Y, Kushner SA, Brown RA, Jentsch JD, Frankland PW, Cannon TD, Silva AJ (2005) The HMG-CoA reductase inhibitor lovastatin reverses the learning and attention deficits in a mouse model of neurofibromatosis type 1. Curr Biol 15(21):1961–1967. doi:10.1016/j.cub.2005.09.043

    Article  CAS  PubMed  Google Scholar 

  20. Xiu J, Nordberg A, Shan KR, Yu WF, Olsson JM, Nordman T, Mousavi M, Guan ZZ (2005) Lovastatin stimulates up-regulation of alpha7 nicotinic receptors in cultured neurons without cholesterol dependency, a mechanism involving production of the alpha-form of secreted amyloid precursor protein. J Neurosci Res 82(4):531–541. doi:10.1002/jnr.20658

    Article  CAS  PubMed  Google Scholar 

  21. Wang C, Chen T, Li G, Zhou L, Sha S, Chen L (2015) Simvastatin prevents beta-amyloid-impaired neurogenesis in hippocampal dentate gyrus through alpha7nAChR-dependent cascading PI3K-Akt and increasing BDNF via reduction of farnesyl pyrophosphate. Neuropharmacology 97:122–132. doi:10.1016/j.neuropharm.2015.05.020

    Article  CAS  PubMed  Google Scholar 

  22. Mann DM, Ponieman D, Montori VM, Arciniega J, McGinn T (2010) The Statin Choice decision aid in primary care: a randomized trial. Patient Educ Couns 80(1):138–140. doi:10.1016/j.pec.2009.10.008

    Article  PubMed  Google Scholar 

  23. Qamar W, Sultana S (2008) Farnesol ameliorates massive inflammation, oxidative stress and lung injury induced by intratracheal instillation of cigarette smoke extract in rats: an initial step in lung chemoprevention. Chem Biol Interact 176(2-3):79–87. doi:10.1016/j.cbi.2008.08.011

    Article  CAS  PubMed  Google Scholar 

  24. Yang R, Chen L, Wang H, Xu B, Tomimoto H, Chen L (2012) Anti-amnesic effect of neurosteroid PREGS in Abeta25-35-injected mice through sigma1 receptor- and alpha7nAChR-mediated neuroprotection. Neuropharmacology 63(6):1042–1050. doi:10.1016/j.neuropharm.2012.07.035

    Article  CAS  PubMed  Google Scholar 

  25. Yin J, Sha S, Chen T, Wang C, Hong J, Jie P, Zhou R, Li L et al (2015) Sigma-1 (sigma(1)) receptor deficiency reduces beta-amyloid(25-35)-induced hippocampal neuronal cell death and cognitive deficits through suppressing phosphorylation of the NMDA receptor NR2B. Neuropharmacology 89:215–224. doi:10.1016/j.neuropharm.2014.09.027

    Article  CAS  PubMed  Google Scholar 

  26. Sha S, Xu J, Lu ZH, Hong J, Qu WJ, Zhou JW, Chen L (2014) Lack of JWA Enhances Neurogenesis and Long-Term Potentiation in Hippocampal Dentate Gyrus Leading to Spatial Cognitive Potentiation. Mol Neurobiol. doi:10.1007/s12035-014-9010-4

    Google Scholar 

  27. Albers KM, Zhang XL, Diges CM, Schwartz ES, Yang CI, Davis BM, Gold MS (2014) Artemin growth factor increases nicotinic cholinergic receptor subunit expression and activity in nociceptive sensory neurons. Mol Pain 10:31. doi:10.1186/1744-8069-10-31

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ghedini PC, Avellar MC, De Lima TC, Lima-Landman MT, Lapa AJ, Souccar C (2012) Quantitative changes of nicotinic receptors in the hippocampus of dystrophin-deficient mice. Brain Res 1483:96–104. doi:10.1016/j.brainres.2012.09.021

    Article  CAS  PubMed  Google Scholar 

  29. Coelho DJ, Sims DJ, Ruegg PJ, Minn I, Muench AR, Mitchell PJ (2005) Cell type-specific and sexually dimorphic expression of transcription factor AP-2 in the adult mouse brain. Neuroscience 134(3):907–919. doi:10.1016/j.neuroscience.2005.04.060

    Article  CAS  PubMed  Google Scholar 

  30. Maurice T, Lockhart BP, Privat A (1996) Amnesia induced in mice by centrally administered beta-amyloid peptides involves cholinergic dysfunction. Brain Res 706(2):181–193

    Article  CAS  PubMed  Google Scholar 

  31. Aggleton JP, Hunt PR, Rawlins JN (1986) The effects of hippocampal lesions upon spatial and non-spatial tests of working memory. Behav Brain Res 19(2):133–146

    Article  CAS  PubMed  Google Scholar 

  32. Mans RA, McMahon LL, Li L (2012) Simvastatin-mediated enhancement of long-term potentiation is driven by farnesyl-pyrophosphate depletion and inhibition of farnesylation. Neuroscience 202:1–9. doi:10.1016/j.neuroscience.2011.12.007

    Article  CAS  PubMed  Google Scholar 

  33. Finlay-Schultz J, Canastar A, Short M, El Gazzar M, Coughlan C, Leonard S (2011) Transcriptional repression of the alpha7 nicotinic acetylcholine receptor subunit gene (CHRNA7) by activating protein-2alpha (AP-2alpha). J Biol Chem 286(49):42123–42132. doi:10.1074/jbc.M111.276014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kihara T, Shimohama S, Sawada H, Honda K, Nakamizo T, Shibasaki H, Kume T, Akaike A (2001) alpha 7 nicotinic receptor transduces signals to phosphatidylinositol 3-kinase to block A beta-amyloid-induced neurotoxicity. J Biol Chem 276(17):13541–13546. doi:10.1074/jbc.M008035200

    Article  CAS  PubMed  Google Scholar 

  35. Blake MG, Boccia MM, Krawczyk MC, Baratti CM (2013) Hippocampal alpha7-nicotinic cholinergic receptors modulate memory reconsolidation: a potential strategy for recovery from amnesia. Neurobiol Learn Mem 106:193–203. doi:10.1016/j.nlm.2013.09.001

    Article  CAS  PubMed  Google Scholar 

  36. Kannan P, Buettner R, Chiao PJ, Yim SO, Sarkiss M, Tainsky MA (1994) N-ras oncogene causes AP-2 transcriptional self-interference, which leads to transformation. Genes Dev 8(11):1258–1269

    Article  CAS  PubMed  Google Scholar 

  37. Gu Z, Lamb PW, Yakel JL (2012) Cholinergic coordination of presynaptic and postsynaptic activity induces timing-dependent hippocampal synaptic plasticity. J Neurosci 32(36):12337–12348. doi:10.1523/JNEUROSCI.2129-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kawamata J, Shimohama S (2011) Stimulating nicotinic receptors trigger multiple pathways attenuating cytotoxicity in models of Alzheimer's and Parkinson's diseases. J Alzheimers Dis 24(Suppl 2):95–109. doi:10.3233/JAD-2011-110173

    CAS  PubMed  Google Scholar 

  39. Mozayan M, Chen MF, Si M, Chen PY, Premkumar LS, Lee TJ (2006) Cholinesterase inhibitor blockade and its prevention by statins of sympathetic alpha7-nAChR-mediated cerebral nitrergic neurogenic vasodilation. J Cereb Blood Flow Metab 26(12):1562–1576. doi:10.1038/sj.jcbfm.9600310

    Article  CAS  PubMed  Google Scholar 

  40. Si ML, Long C, Yang DI, Chen MF, Lee TJ (2005) Statins prevent beta-amyloid inhibition of sympathetic alpha7-nAChR-mediated nitrergic neurogenic dilation in porcine basilar arteries. J Cereb Blood Flow Metab 25(12):1573–1585. doi:10.1038/sj.jcbfm.9600232

    Article  CAS  PubMed  Google Scholar 

  41. Maelicke A, Schrattenholz A, Samochocki M, Radina M, Albuquerque EX (2000) Allosterically potentiating ligands of nicotinic receptors as a treatment strategy for Alzheimer's disease. Behav Brain Res 113(1-2):199–206

    Article  CAS  PubMed  Google Scholar 

  42. Colon-Saez JO, Yakel JL (2011) The alpha7 nicotinic acetylcholine receptor function in hippocampal neurons is regulated by the lipid composition of the plasma membrane. J Physiol 589(Pt 13):3163–3174. doi:10.1113/jphysiol.2011.209494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Abraham WC, Tate WP (1997) Metaplasticity: a new vista across the field of synaptic plasticity. Prog Neurobiol 52(4):303–323

    Article  CAS  PubMed  Google Scholar 

  44. Cheng Q, Yakel JL (2014) Presynaptic alpha7 nicotinic acetylcholine receptors enhance hippocampal mossy fiber glutamatergic transmission via PKA activation. J Neurosci 34(1):124–133. doi:10.1523/JNEUROSCI.2973-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hunter BE, de Fiebre CM, Papke RL, Kem WR, Meyer EM (1994) A novel nicotinic agonist facilitates induction of long-term potentiation in the rat hippocampus. Neurosci Lett 168(1-2):130–134

    Article  CAS  PubMed  Google Scholar 

  46. Opazo P, Watabe AM, Grant SG, O'Dell TJ (2003) Phosphatidylinositol 3-kinase regulates the induction of long-term potentiation through extracellular signal-related kinase-independent mechanisms. J Neurosci 23(9):3679–3688

    CAS  PubMed  Google Scholar 

  47. Thomas GM, Huganir RL (2004) MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5(3):173–183. doi:10.1038/nrn1346

    Article  CAS  PubMed  Google Scholar 

  48. Qin Y, Zhu Y, Baumgart JP, Stornetta RL, Seidenman K, Mack V, van Aelst L, Zhu JJ (2005) State-dependent Ras signaling and AMPA receptor trafficking. Genes Dev 19(17):2000–2015. doi:10.1101/gad.342205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen L, Miyamoto Y, Furuya K, Mori N, Sokabe M (2007) PREGS induces LTP in the hippocampal dentate gyrus of adult rats via the tyrosine phosphorylation of NR2B coupled to ERK/CREB [corrected] signaling. J Neurophysiol 98(3):1538–1548. doi:10.1152/jn.01151.2006

    Article  CAS  PubMed  Google Scholar 

  50. Wang Q, Zengin A, Deng C, Li Y, Newell KA, Yang GY, Lu Y, Wilder-Smith EP et al (2009) High dose of simvastatin induces hyperlocomotive and anxiolytic-like activities: The association with the up-regulation of NMDA receptor binding in the rat brain. Exp Neurol 216(1):132–138. doi:10.1016/j.expneurol.2008.11.016

    Article  CAS  PubMed  Google Scholar 

  51. Thornton C, Yaka R, Dinh S, Ron D (2003) H-Ras modulates N-methyl-D-aspartate receptor function via inhibition of Src tyrosine kinase activity. J Biol Chem 278(26):23823–23829. doi:10.1074/jbc.M302389200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Manabe T, Aiba A, Yamada A, Ichise T, Sakagami H, Kondo H, Katsuki M (2000) Regulation of long-term potentiation by H-Ras through NMDA receptor phosphorylation. J Neurosci 20(7):2504–2511

    CAS  PubMed  Google Scholar 

  53. Meyer EM, Tay ET, Papke RL, Meyers C, Huang GL, de Fiebre CM (1997) 3-[2,4-Dimethoxybenzylidene]anabaseine (DMXB) selectively activates rat alpha7 receptors and improves memory-related behaviors in a mecamylamine-sensitive manner. Brain Res 768(1-2):49–56

    Article  CAS  PubMed  Google Scholar 

  54. Levin ED, Bettegowda C, Blosser J, Gordon J (1999) AR-R17779, and alpha7 nicotinic agonist, improves learning and memory in rats. Behav Pharmacol 10(6-7):675–680

    Article  CAS  PubMed  Google Scholar 

  55. Kihara T, Sawada H, Nakamizo T, Kanki R, Yamashita H, Maelicke A, Shimohama S (2004) Galantamine modulates nicotinic receptor and blocks Abeta-enhanced glutamate toxicity. Biochem Biophys Res Commun 325(3):976–982. doi:10.1016/j.bbrc.2004.10.132

    Article  CAS  PubMed  Google Scholar 

  56. Ren K, Thinschmidt J, Liu J, Ai L, Papke RL, King MA, Hughes JA, Meyer EM (2007) alpha7 Nicotinic receptor gene delivery into mouse hippocampal neurons leads to functional receptor expression, improved spatial memory-related performance, and tau hyperphosphorylation. Neuroscience 145(1):314–322. doi:10.1016/j.neuroscience.2006.11.023

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants for National 973 Basic Research Program of China (2014CB943303) and National Natural Science Foundation of China (81071027; 31171440; 81361120247; 31271206) to Chen L.

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with Ethical Standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Chen or Ling Chen.

Additional information

Headings

(1) Chronic administration of simvastatin (SV) enhances spatial memory in mice.

(2) SV enhances hippocampal Schaffer collateral-CA1 synaptic glutamate release and LTP induction in α7nAChR-dependent manner.

(3) SV through reducing farnesyl pyrophosphate increases α7nAChR expression and activity to cascade PI3K-Akt and ERK signaling pathways.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 193 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Wang, C., Sha, S. et al. Simvastatin Enhances Spatial Memory and Long-Term Potentiation in Hippocampal CA1 via Upregulation of α7 Nicotinic Acetylcholine Receptor. Mol Neurobiol 53, 4060–4072 (2016). https://doi.org/10.1007/s12035-015-9344-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9344-6

Keywords

Navigation