Skip to main content
Log in

Signaling Mechanism of Cannabinoid Receptor-2 Activation-Induced β-Endorphin Release

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Activation of cannabinoid receptor-2 (CB2) results in β-endorphin release from keratinocytes, which then acts on primary afferent neurons to inhibit nociception. However, the underlying mechanism is still unknown. The CB2 receptor is generally thought to couple to Gi/o to inhibit cAMP production, which cannot explain the peripheral stimulatory effects of CB2 receptor activation. In this study, we found that in a keratinocyte cell line, the Gβγ subunits from Gi/o, but not Gαs, were involved in CB2 receptor activation-induced β-endorphin release. Inhibition of MAPK kinase, but not PLC, abolished CB2 receptor activation-induced β-endorphin release. Also, CB2 receptor activation significantly increased intracellular Ca2+. Treatment with BAPTA-AM or thapsigargin blocked CB2 receptor activation-induced β-endorphin release. Using a rat model of inflammatory pain, we showed that the MAPK kinase inhibitor PD98059 abolished the peripheral effect of the CB2 receptor agonist on nociception. We thus present a novel mechanism of CB2 receptor activation-induced β-endorphin release through Gi/o-Gβγ-MAPK-Ca2+ signaling pathway. Our data also suggest that stimulation of MAPK contributes to the peripheral analgesic effect of CB2 receptor agonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Howlett AC (2005) Cannabinoid receptor signaling. Handb Exp Pharmacol 168:53–79

    Article  CAS  Google Scholar 

  2. Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365(6441):61–65. doi:10.1038/365061a0

    Article  CAS  PubMed  Google Scholar 

  3. Guindon J, Hohmann AG (2008) Cannabinoid CB2 receptors: a therapeutic target for the treatment of inflammatory and neuropathic pain. Br J Pharmacol 153(2):319–334. doi:10.1038/sj.bjp.0707531

    Article  CAS  PubMed  Google Scholar 

  4. Anand P, Whiteside G, Fowler CJ, Hohmann AG (2009) Targeting CB2 receptors and the endocannabinoid system for the treatment of pain. Brain Res Rev 60(1):255–266. doi:10.1016/j.brainresrev.2008.12.003

    Article  CAS  PubMed  Google Scholar 

  5. Ibrahim MM, Porreca F, Lai J, Albrecht PJ, Rice FL, Khodorova A, Davar G, Makriyannis A (2005) CB2 cannabinoid receptor activation produces antinociception by stimulating peripheral release of endogenous opioids. Proc Natl Acad Sci U S A 102(8):3093–3098. doi:10.1073/pnas.0409888102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Katritch V, Cherezov V, Stevens RC (2012) Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol Sci 33(1):17–27. doi:10.1016/j.tips.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  7. Birnbaumer L (1992) Receptor-to-effector signaling through G proteins: roles for beta gamma dimers as well as alpha subunits. Cell 71(7):1069–1072

    Article  CAS  PubMed  Google Scholar 

  8. Mizuta K, Mizuta F, Xu D, Masaki E, Panettieri RA Jr, Emala CW (2011) Gi-coupled gamma-aminobutyric acid-B receptors cross-regulate phospholipase C and calcium in airway smooth muscle. Am J Respir Cell Mol Biol 45(6):1232–1238. doi:10.1165/rcmb.2011-0088OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Surve CR, Lehmann D, Smrcka AV (2014) A chemical biology approach demonstrates G protein betagamma subunits are sufficient to mediate directional neutrophil chemotaxis. J Biol Chem 289(25):17791–17801. doi:10.1074/jbc.M114.576827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Berridge MJ, Irvine RF (1989) Inositol phosphates and cell signalling. Nature 341(6239):197–205. doi:10.1038/341197a0

    Article  CAS  PubMed  Google Scholar 

  11. Rittner HL, Labuz D, Richter JF, Brack A, Schafer M, Stein C, Mousa SA (2007) CXCR1/2 ligands induce p38 MAPK-dependent translocation and release of opioid peptides from primary granules in vitro and in vivo. Brain Behav Immun 21(8):1021–1032. doi:10.1016/j.bbi.2007.05.002

    Article  CAS  PubMed  Google Scholar 

  12. Glass M, Felder CC (1997) Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augments cAMP accumulation in striatal neurons: evidence for a Gs linkage to the CB1 receptor. J Neurosci 17(14):5327–5333

    CAS  PubMed  Google Scholar 

  13. Bonhaus DW, Chang LK, Kwan J, Martin GR (1998) Dual activation and inhibition of adenylyl cyclase by cannabinoid receptor agonists: evidence for agonist-specific trafficking of intracellular responses. J Pharmacol Exp Ther 287(3):884–888

    CAS  PubMed  Google Scholar 

  14. Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16(2):109–110

    Article  CAS  PubMed  Google Scholar 

  15. Su TF, Zhang LH, Peng M, Wu CH, Pan W, Tian B, Shi J, Pan HL et al (2011) Cannabinoid CB2 receptors contribute to upregulation of beta-endorphin in inflamed skin tissues by electroacupuncture. Mol Pain 7:98. doi:10.1186/1744-8069-7-98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hargreaves K, Dubner R, Brown F, Flores C, Joris J (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32(1):77–88

    Article  CAS  PubMed  Google Scholar 

  17. Khan GM, Chen SR, Pan HL (2002) Role of primary afferent nerves in allodynia caused by diabetic neuropathy in rats. Neuroscience 114(2):291–299

    Article  CAS  PubMed  Google Scholar 

  18. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53(1):55–63

    Article  CAS  PubMed  Google Scholar 

  19. Smrcka AV (2008) G protein betagamma subunits: central mediators of G protein-coupled receptor signaling. Cell Mol Life Sci 65(14):2191–2214. doi:10.1007/s00018-008-8006-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lehmann DM, Seneviratne AM, Smrcka AV (2008) Small molecule disruption of G protein beta gamma subunit signaling inhibits neutrophil chemotaxis and inflammation. Mol Pharmacol 73(2):410–418. doi:10.1124/mol.107.041780

    Article  CAS  PubMed  Google Scholar 

  21. Muto Y, Nagao T, Urushidani T (1997) The putative phospholipase C inhibitor U73122 and its negative control, U73343, elicit unexpected effects on the rabbit parietal cell. J Pharmacol Exp Ther 282(3):1379–1388

    CAS  PubMed  Google Scholar 

  22. Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR (1995) PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem 270(46):27489–27494

    Article  CAS  PubMed  Google Scholar 

  23. Cabot PJ, Carter L, Gaiddon C, Zhang Q, Schafer M, Loeffler JP, Stein C (1997) Immune cell-derived beta-endorphin. Production, release, and control of inflammatory pain in rats. J Clin Invest 100(1):142–148. doi:10.1172/JCI119506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen XP, Yang W, Fan Y, Luo JS, Hong K, Wang Z, Yan JF, Chen X et al (2010) Structural determinants in the second intracellular loop of the human cannabinoid CB1 receptor mediate selective coupling to G(s) and G(i). Br J Pharmacol 161(8):1817–1834. doi:10.1111/j.1476-5381.2010.01006.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Khodorova A, Navarro B, Jouaville LS, Murphy JE, Rice FL, Mazurkiewicz JE, Long-Woodward D, Stoffel M et al (2003) Endothelin-B receptor activation triggers an endogenous analgesic cascade at sites of peripheral injury. Nat Med 9(8):1055–1061

    Article  CAS  PubMed  Google Scholar 

  26. Wintzen M, Yaar M, Burbach JP, Gilchrest BA (1996) Proopiomelanocortin gene product regulation in keratinocytes. J Investig Dermatol 106(4):673–678

    Article  CAS  PubMed  Google Scholar 

  27. Funasaka Y, Chakraborty AK, Yodoi J, Ichihashi M (2001) The effect of thioredoxin on the expression of proopiomelanocortin-derived peptides, the melanocortin 1 receptor and cell survival of normal human keratinocytes. J Investig Dermatol Symp Proc 6(1):32–37. doi:10.1046/j.0022-202x.2001.00002.x

    Article  CAS  PubMed  Google Scholar 

  28. Geng X, Du XN, Rusinova R, Liu BY, Li F, Zhang X, Chen XJ, Logothetis DE et al (2009) Specificity of Gbetagamma signaling depends on Galpha subunit coupling with G-protein-sensitive K(+) channels. Pharmacology 84(2):82–90. doi:10.1159/000227772

    Article  CAS  PubMed  Google Scholar 

  29. Chan JS, Lee JW, Ho M, Wong Y (2000) Preactivation permits subsequent stimulation of phospholipase C by Gi coupled receptor. Mol Pharmacol 57:700–708

    CAS  PubMed  Google Scholar 

  30. Faure M, Voyno-Yasenetskaya TA, Bourne HR (1994) cAMP and beta gamma subunits of heterotrimeric G proteins stimulate the mitogen-activated protein kinase pathway in COS-7 cells. J Biol Chem 269(11):7851–7854

    CAS  PubMed  Google Scholar 

  31. Correa F, Hernangomez M, Mestre L, Loria F, Spagnolo A, Docagne F, Di Marzo V, Guaza C (2010) Anandamide enhances IL-10 production in activated microglia by targeting CB(2) receptors: roles of ERK1/2, JNK, and NF-kappaB. Glia 58(2):135–147. doi:10.1002/glia.20907

    Article  PubMed  Google Scholar 

  32. Kim SY, Han Y, Oh M, Kim W, Oh K, Lee SC, Bae K, Han B (2014) DUSP4 regulates neuronal differentiation and calcium homeostasis by modulating ERK1/2 phosphorylation. Stem Cells Dev. doi:10.1089/scd.2014.0434

    Google Scholar 

  33. Zhuang ZY, Gerner P, Woolf CJ, Ji RR (2005) ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain 114(1–2):149–159. doi:10.1016/j.pain.2004.12.022

    Article  PubMed  Google Scholar 

  34. Liu CY, Lu ZY, Li N, Yu LH, Zhao YF, Ma B (2015) The role of large-conductance, calcium-activated potassium channels in a rat model of trigeminal neuropathic pain. Cephalalgia 35(1):16–35. doi:10.1177/0333102414534083

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Natural Science Foundation of China (#81173328, #31300598), funds for the Doctoral Program of Higher Education of China (20120142110021), and the Fundamental Research Funds for the Central Universities, HUST:2010JC065.

Conflict of Interest

The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, F., Zhang, LH., Su, TF. et al. Signaling Mechanism of Cannabinoid Receptor-2 Activation-Induced β-Endorphin Release. Mol Neurobiol 53, 3616–3625 (2016). https://doi.org/10.1007/s12035-015-9291-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9291-2

Keywords

Navigation