Skip to main content
Log in

Myelin Basic Protein Cleaves Cell Adhesion Molecule L1 and Improves Regeneration After Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Myelin basic protein (MBP) is a serine protease that cleaves neural cell adhesion molecule L1 and generates a transmembrane L1 fragment which facilitates L1-dependent functions in vitro, such as neurite outgrowth, neuronal cell migration and survival, myelination by Schwann cells as well as Schwann cell proliferation, migration, and process formation. Ablation and blocking of MBP or disruption of its proteolytic activity by mutation of a proteolytically active serine residue abolish L1-dependent cellular responses. In utero injection of adeno-associated virus encoding proteolytically active MBP into MBP-deficient shiverer mice normalizes differentiation, myelination, and synaptogenesis in the developing postnatal spinal cord, in contrast to proteolytically inactive MBP. Application of active MBP to the injured wild-type spinal cord and femoral nerve augments levels of a transmembrane L1 fragment, promotes remyelination, and improves functional recovery after injury. Application of MBP antibody impairs recovery. Virus-mediated expression of active MBP in the lesion site after spinal cord injury results in improved functional recovery, whereas injection of virus encoding proteolytically inactive MBP fails to do so. The present study provides evidence for a novel L1-mediated function of MBP in the developing spinal cord and in the injured adult mammalian nervous system that leads to enhanced recovery after acute trauma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Maness PF, Schachner M (2007) Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nat Neurosci 10(1):19–26

    Article  CAS  PubMed  Google Scholar 

  2. Schmid RS, Maness PF (2008) L1 and NCAM adhesion molecules as signaling coreceptors in neuronal migration and process outgrowth. Curr Opin Neurobiol 18(3):245–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Loers G, Schachner M (2007) Recognition molecules and neural repair. J Neurochem 101(4):865–882

    Article  CAS  PubMed  Google Scholar 

  4. Roonprapunt C, Huang W, Grill R, Friedlander D, Grumet M, Chen S, Schachner M, Young W (2003) Soluble cell adhesion molecule L1-Fc promotes locomotor recovery in rats after spinal cord injury. J Neurotrauma 20(9):871–882

    Article  PubMed  Google Scholar 

  5. Barbin G, Aigrot MS, Charles P, Foucher A, Grumet M, Schachner M, Zalc B, Lubetzki C (2004) Axonal cell-adhesion molecule L1 in CNS myelination. Neuron Glia Biol 1(1):65–72

    Article  CAS  PubMed  Google Scholar 

  6. Chen J, Wu J, Apostolova I, Skup M, Irintchev A, Kügler S, Schachner M (2007) Adeno-associated virus-mediated L1 expression promotes functional recovery after spinal cord injury. Brain 130(Pt 4):954–969

    PubMed  Google Scholar 

  7. Lavdas AA, Chen J, Papastefanaki F, Chen S, Schachner M, Matsas R, Thomaidou D (2010) Schwann cells engineered to express the cell adhesion molecule L1 accelerate myelination and motor recovery after spinal cord injury. Exp Neurol 221(1):206–216

    Article  CAS  PubMed  Google Scholar 

  8. Cui YF, Xu JC, Hargus G, Jakovcevski I, Schachner M, Bernreuther C (2011) Embryonic stem cell-derived L1 overexpressing neural aggregates enhance recovery after spinal cord injury in mice. PLoS One 6(3), e17126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu JC, Bernreuther C, Cui YF, Jakovcevski I, Hargus G, Xiao MF, Schachner M (2011) Transplanted L1 expressing radial glia and astrocytes enhance recovery after spinal cord injury. J Neurotrauma 28(9):1921–1937

    Article  PubMed  Google Scholar 

  10. Poltorak M, Khoja I, Hemperly JJ, Williams JR, el-Mallakh R, Freed WJ (1995) Disturbances in cell recognition molecules (N-CAM and L1 antigen) in the CSF of patients with schizophrenia. Exp Neurol 131(2):266–272

    Article  CAS  PubMed  Google Scholar 

  11. Kurumaji A, Nomoto H, Okano T, Toru M (2001) An association study between polymorphism of L1CAM gene and schizophrenia in a Japanese sample. Am J Med Genet 105(1):99–104

    Article  CAS  PubMed  Google Scholar 

  12. Strekalova H, Buhmann C, Kleene R, Eggers C, Saffell J, Hemperly J, Weiller C, Müller-Thomsen T et al (2006) Elevated levels of neural recognition molecule L1 in the cerebrospinal fluid of patients with Alzheimer disease and other dementia syndromes. Neurobiol Aging 27(1):1–9

    Article  CAS  PubMed  Google Scholar 

  13. Wakabayashi Y, Uchida S, Funato H, Matsubara T, Watanuki T, Otsuki K, Fujimoto M, Nishida A et al (2008) State-dependent changes in the expression levels of NCAM-140 and L1 in the peripheral blood cells of bipolar disorders, but not in the major depressive disorders. Prog Neuropsychopharmacol Biol Psychiatry 32(5):1199–1205

    Article  CAS  PubMed  Google Scholar 

  14. Schäfer MK, Altevogt P (2010) L1CAM malfunction in the nervous system and human carcinomas. Cell Mol Life Sci 67(14):2425–2437

    Article  PubMed  Google Scholar 

  15. Sadoul K, Sadoul R, Faissner A, Schachner M (1988) Biochemical characterization of different molecular forms of the neural cell adhesion molecule L1. J Neurochem 50(2):510–521

    Article  CAS  PubMed  Google Scholar 

  16. Nayeem N, Silletti S, Yang X, Lemmon VP, Reisfeld RA, Stallcup WB, Montgomery AM (1999) A potential role for the plasmin(ogen) system in the posttranslational cleavage of the neural cell adhesion molecule L1. J Cell Sci 112(Pt24):4739–4749

    CAS  PubMed  Google Scholar 

  17. Silletti S, Mei F, Sheppard D, Montgomery AM (2000) Plasmin-sensitive dibasic sequences in the third fibronectin-like domain of L1-cell adhesion molecule (CAM) facilitate homomultimerization and concomitant integrin recruitment. J Cell Biol 149(7):1485–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mechtersheimer S, Gutwein P, Agmon-Levin N, Stoeck A, Oleszewski M, Riedle S, Postina R, Fahrenholz F et al (2001) Ectodomain shedding of L1 adhesion molecule promotes cell migration by autocrine binding to integrins. J Cell Biol 155:661–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kalus I, Schnegelsberg B, Seidah NG, Kleene R, Schachner M (2003) The proprotein convertase PC5A and a metalloprotease are involved in the proteolytic processing of the neural adhesion molecule L1. J Biol Chem 278(12):10381–10388

    Article  CAS  PubMed  Google Scholar 

  20. Matsumoto-Miyai K, Ninomiya A, Yamasaki H, Tamura H, Nakamura Y, Shiosaka S (2003) NMDA-dependent proteolysis of presynaptic adhesion molecule L1 in the hippocampus by neuropsin. J Neurosci 23(21):7727–7736

    CAS  PubMed  Google Scholar 

  21. Maretzky T, Schulte M, Ludwig A, Rose-John S, Blobel C, Hartmann D, Altevogt P, Saftig P et al (2005) L1 is sequentially processed by two differently activated metalloproteases and presenilin/gamma-secretase and regulates neural cell adhesion, cell migration, and neurite outgrowth. Mol Cell Biol 25(20):9040–9053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Riedle S, Kiefel H, Gast D, Bondong S, Wolterink S, Gutwein P, Altevogt P (2009) Nuclear translocation and signalling of L1-CAM in human carcinoma cells requires ADAM10 and presenilin/gamma-secretase activity. Biochem J 420(3):391–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lutz D, Wolters-Eisfeld G, Schachner M, Kleene R (2014) Cathepsin E generates a sumoylated intracellular fragment of the cell adhesion molecule L1 to promote neuronal and Schwann cell migration as well as myelination. J Neurochem 128(5):713–724

    Article  CAS  PubMed  Google Scholar 

  24. Lutz D, Loers G, Kleene R, Oezen I, Kataria H, Katagihallimath N, Braren I, Harauz G et al (2014) Myelin basic protein cleaves cell adhesion molecule L1 and promotes neuritogenesis and cell survival. J Biol Chem 289(19):13503–13518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Readhead C, Takasashi N, Shine HD, Saavedra R, Sidman R, Hood L (1990) Role of myelin basic protein in the formation of central nervous system myelin. Ann N Y Acad Sci 605:280–285

    Article  CAS  PubMed  Google Scholar 

  26. Readhead C, Hood L (1990) The dysmyelinating mouse mutations shiverer (shi) and myelin deficient (shimld). Behav Genet 20(2):213–234

    Article  CAS  PubMed  Google Scholar 

  27. Boggs JM (2006) Myelin basic protein: a multifunctional protein. Cell Mol Life Sci 63(17):1945–1961

    Article  CAS  PubMed  Google Scholar 

  28. Lutz D, Wolters-Eisfeld G, Joshi G, Djogo N, Jakovcevski I, Schachner M, Kleene R (2012) Generation and nuclear translocation of a sumoylated transmembrane fragment of the cell adhesion molecule L1. J Biol Chem 287(21):17161–17175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dahme M, Bartsch U, Martini R, Anliker B, Schachner M, Mantei N (1997) Disruption of the mouse L1 gene leads to malformations of the nervous system. Nat Genet 17(3):346–349

    Article  CAS  PubMed  Google Scholar 

  30. Mikoshiba K, Takamatsu K, Tsukada Y (1983) Peripheral nervous system of shiverer mutant mice: developmental change of myelin components and immunohistochemical demonstration of the absence of MBP and presence of P2 protein. Brain Res 283(1):71–79

    Article  CAS  PubMed  Google Scholar 

  31. Wolf MK, Billings-Gagliardi S (1984) CNS hypomyelinated mutant mice (jimpy, shiverer, quaking): in vitro evidence for primary oligodendrocyte defects. Adv Exp Med Biol 181:115–133

    Article  CAS  PubMed  Google Scholar 

  32. Appel F, Holm J, Conscience JF, von Bohlen und Halbach F, Faissner A, James P, Schachner M (1995) Identification of the border between fibronectin type III homologous repeats 2 and 3 of the neural cell adhesion molecule L1 as a neurite outgrowth promoting and signal transducing domain. J Neurobiol 28(3):297–312

    Article  CAS  PubMed  Google Scholar 

  33. Pedraza L, Fidler L, Staugaitis SM, Colman DR (1997) The active transport of myelin basic protein into the nucleus suggests a regulatory role in myelination. Neuron 18(4):579–589

    Article  CAS  PubMed  Google Scholar 

  34. Kleene R, Yang H, Kutsche M, Schachner M (2001) The neural recognition molecule L1 is a sialic acid-binding lectin for CD24, which induces promotion and inhibition of neurite outgrowth. J Biol Chem 276(24):21656–21663

    Article  CAS  PubMed  Google Scholar 

  35. Makhina T, Loers G, Schulze C, Ueberle B, Schachner M, Kleene R (2009) Extracellular GAPDH binds to L1 and enhances neurite outgrowth. Mol Cell Neurosci 41(2):206–218

    Article  CAS  PubMed  Google Scholar 

  36. Simova O, Irintchev A, Mehanna A, Liu J, Dihné M, Bächle D, Sewald N, Loers G et al (2006) Carbohydrate mimics promote functional recovery after peripheral nerve repair. Ann Neurol 60(4):430–437

    Article  CAS  PubMed  Google Scholar 

  37. Lieberoth A, Splittstoesser F, Katagihallimath N, Jakovcevski I, Loers G, Ranscht B, Karagogeos D, Schachner M et al (2009) Lewis(x) and alpha2,3-sialyl glycans and their receptors TAG-1, Contactin, and L1 mediate CD24-dependent neurite outgrowth. J Neurosci 29(20):6677–6690

    Article  CAS  PubMed  Google Scholar 

  38. Mehanna A, Mishra B, Kurschat N, Schulze C, Bian S, Loers G, Irintchev A, Schachner M (2009) Polysialic acid glycomimetics promote myelination and functional recovery after peripheral nerve injury in mice. Brain 132(Pt 6):1449–1462

    Article  PubMed  Google Scholar 

  39. Curtis R, Green D, Lindsay RM, Wilkin GP (1993) Up-regulation of GAP-43 and growth of axons in rat spinal cord after compression injury. J Neurocytol 22(1):51–64

    Article  CAS  PubMed  Google Scholar 

  40. Basso DM, Fisher LC, Anderson AJ, Jakeman LB, McTigue DM, Popovich PG (2006) Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J Neurotrauma 23(5):635–659

    Article  PubMed  Google Scholar 

  41. Apostolova I, Irintchev A, Schachner M (2006) Tenascin-R restricts posttraumatic remodeling of motoneuron innervation and functional recovery after spinal cord injury in adult mice. J Neurosci 26(30):7849–7859

    Article  CAS  PubMed  Google Scholar 

  42. Chen S, Mantei N, Dong L, Schachner M (1999) Prevention of neuronal cell death by neural adhesion molecules L1 and CHL1. J Neurobiol 38(3):428–439

    Article  CAS  PubMed  Google Scholar 

  43. Loers G, Chen S, Grumet M, Schachner M (2005) Signal transduction pathways implicated in neural recognition molecule L1 triggered neuroprotection and neuritogenesis. J Neurochem 92(6):1463–1476

    Article  CAS  PubMed  Google Scholar 

  44. Guseva D, Angelov DN, Irintchev A, Schachner M (2009) Ablation of adhesion molecule L1 in mice favours Schwann cell proliferation and functional recovery after peripheral nerve injury. Brain 132(Pt 8):2180–2195

    Article  PubMed  Google Scholar 

  45. Guseva D, Zerwas M, Xiao MF, Jakovcevski I, Irintchev A, Schachner M (2011) Adhesion molecule L1 overexpressed under the control of the neuronal Thy-1 promoter improves myelination after peripheral nerve injury in adult mice. Exp Neurol 229(2):339–352

    Article  CAS  PubMed  Google Scholar 

  46. Irintchev A, Simova O, Eberhardt KA, Morellini F, Schachner M (2005) Impacts of lesion severity and tyrosine kinase receptor B deficiency on functional outcome of femoral nerve injury assessed by a novel single-frame motion analysis in mice. Eur J Neurosci 22(4):802–808

    Article  PubMed  Google Scholar 

  47. Petryniak MA, Potter GB, Rowitch DH, Rubenstein JL (2007) Dlx1 and Dlx2 control neuronal versus oligodendroglial cell fate acquisition in the developing forebrain. Neuron 55(3):417–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mehanna A, Szpotowicz E, Schachner M, Jakovcevski I (2014) Improved regeneration after femoral nerve injury in mice lacking functional T- and B-lymphocytes. Exp Neurol 261:147–155

    Article  CAS  PubMed  Google Scholar 

  49. Djogo N, Jakovcevski I, Müller C, Lee HJ, Xu JC, Jakovcevski M, Kügler S, Loers G et al (2013) Adhesion molecule L1 binds to amyloid beta and reduces Alzheimer’s disease pathology in mice. Neurobiol Dis 56:104–115

    Article  CAS  PubMed  Google Scholar 

  50. D’Souza CA, Wood DD, She YM, Moscarello MA (2005) Autocatalytic cleavage of myelin basic protein: an alternative to molecular mimicry. Biochemistry 44(38):12905–12913

    Article  PubMed  Google Scholar 

  51. Liao MC, Ahmed M, Smith SO, Van Nostrand WE (2009) Degradation of amyloid beta protein by purified myelin basic protein. J Biol Chem 284(42):28917–28925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Musse AA, Harauz G (2007) Molecular “negativity” may underlie multiple sclerosis: role of the myelin basic protein family in the pathogenesis of MS. Int Rev Neurobiol 79:149–172

    Article  CAS  PubMed  Google Scholar 

  53. Derfuss T, Meinl E (2012) Identifying autoantigens in demyelinating diseases: valuable clues to diagnosis and treatment? Curr Opin Neurol 25(3):231–238

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to David Colman for the gift of antibody against the exon II-encoded domain of mouse MBP. We appreciate the excellent technical assistance from Ute Bork, Emanuela Szpotowicz, Dagmar Drexler, Barbara Holstermann, Fritz Kutschera and Torsten Renz, Eva Kronberg and Ulrike Wolters for breeding and maintenance of mice, and Gabriele Rune for the possibility to use the electron microscope. Bin Wu was supported by the National Natural Science Foundation of China (81000520). Melitta Schachner is supported by the New Jersey Commission for Spinal Cord Research and the Li Ka-Shing Foundation at Shantou University Medical College.

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melitta Schachner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lutz, D., Kataria, H., Kleene, R. et al. Myelin Basic Protein Cleaves Cell Adhesion Molecule L1 and Improves Regeneration After Injury. Mol Neurobiol 53, 3360–3376 (2016). https://doi.org/10.1007/s12035-015-9277-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9277-0

Keywords

Navigation