Skip to main content

Advertisement

Log in

Rescue of Brain Function Using Tunneling Nanotubes Between Neural Stem Cells and Brain Microvascular Endothelial Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Evidence indicates that neural stem cells (NSCs) can ameliorate cerebral ischemia in animal models. In this study, we investigated the mechanism underlying one of the neuroprotective effects of NSCs: tunneling nanotube (TNT) formation. We addressed whether the control of cell-to-cell communication processes between NSCs and brain microvascular endothelial cells (BMECs) and, particularly, the control of TNT formation could influence the rescue function of stem cells. In an attempt to mimic the cellular microenvironment in vitro, a co-culture system consisting of terminally differentiated BMECs from mice in a distressed state and NSCs was constructed. Additionally, engraftment experiments with infarcted mouse brains revealed that control of TNT formation influenced the effects of stem cell transplantation in vivo. In conclusion, our findings provide the first evidence that TNTs exist between NSCs and BMECs and that regulation of TNT formation alters cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ciccone A et al (2013) Endovascular treatment for acute ischemic stroke. N Engl J Med 368:904–913. doi:10.1056/NEJMoa1213701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stone LL, Grande A, Low WC (2013) Neural repair and neuroprotection with stem cells in ischemic stroke. Brain Sci 3:599–614. doi:10.3390/brainsci3020599

    Article  PubMed  PubMed Central  Google Scholar 

  3. Maciaczyk J, Singec I, Maciaczyk D, Klein A, Nikkhah G (2009) Restricted spontaneous in vitro differentiation and region-specific migration of long-term expanded fetal human neural precursor cells after transplantation into the adult rat brain. Stem Cells Dev 18:1043–1058. doi:10.1089/scd.2008.0346

    Article  CAS  PubMed  Google Scholar 

  4. Sakata H et al (2012) Interleukin 6-preconditioned neural stem cells reduce ischaemic injury in stroke mice. Brain J Neurol 135:3298–3310. doi:10.1093/brain/aws259

    Article  Google Scholar 

  5. Mudo G et al (2009) The FGF-2/FGFRs neurotrophic system promotes neurogenesis in the adult brain. J Neural Trans 116:995–1005. doi:10.1007/s00702-009-0207-z

    Article  CAS  Google Scholar 

  6. Hankey GJ, Eikelboom JW (1999) Homocysteine and vascular disease. Lancet 354:407–413. doi:10.1016/s0140-6736(98)11058-9

    Article  CAS  PubMed  Google Scholar 

  7. Marzo L, Gousset K, Zurzolo C (2012) Multifaceted roles of tunneling nanotubes in intercellular communication. Front Physiol 3:72. doi:10.3389/fphys.2012.00072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010. doi:10.1126/science.1093133

    Article  CAS  PubMed  Google Scholar 

  9. Plotnikov EY et al (2008) Cell-to-cell cross-talk between mesenchymal stem cells and cardiomyocytes in co-culture. J Cell Mol Med 12:1622–1631. doi:10.1111/j.1582-4934.2007.00205.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Acquistapace A et al (2011) Human mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondria transfer. Stem Cells 29:812–824. doi:10.1002/stem.632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bloemendal S, Kuck U (2013) Cell-to-cell communication in plants, animals, and fungi: a comparative review. Naturwissenschaften 100:3–19. doi:10.1007/s00114-012-0988-z

    Article  CAS  PubMed  Google Scholar 

  12. Koyanagi M, Brandes RP, Haendeler J, Zeiher AM, Dimmeler S (2005) Cell-to-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes: a novel mechanism for cell fate changes? Circ Res 96:1039–1041. doi:10.1161/01.RES.0000168650.23479.0c

    Article  CAS  PubMed  Google Scholar 

  13. Figeac F et al (2014) Nanotubular crosstalk with distressed cardiomyocytes stimulates the paracrine repair function of mesenchymal stem cells. Stem Cells 32:216–230. doi:10.1002/stem.1560

    Article  CAS  PubMed  Google Scholar 

  14. Hase K et al (2009) M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex. Nat Cell Biol 11:1427–1432. doi:10.1038/ncb1990

    Article  CAS  PubMed  Google Scholar 

  15. Bonner JF, Haas CJ, Fischer I (2013) Preparation of neural stem cells and progenitors: neuronal production and grafting applications. Method Molecul Biol 1078:65–88. doi:10.1007/978-1-62703-640-5_7

    Article  CAS  Google Scholar 

  16. Connolly ES Jr, Winfree CJ, Stern DM, Solomon RA, Pinsky DJ (1996) Procedural and strain-related variables significantly affect outcome in a murine model of focal cerebral ischemia. Neurosurgery 38:523–531, discussion 532

    PubMed  Google Scholar 

  17. Hata R et al (1998) A reproducible model of middle cerebral artery occlusion in mice: hemodynamic, biochemical, and magnetic resonance imaging. J Cereb Blood Flow Metabol Offic J Int Soc Cereb Blood Flow Metabol 18:367–375. doi:10.1097/00004647-199804000-00004

    Article  CAS  Google Scholar 

  18. Chen CC et al. (2014) A forced running wheel system with a microcontroller that provides high-intensity exercise training in an animal ischemic stroke model. Braz J Med Biol Res 47:858–868. doi:10.1590/1414-431X20143754

  19. Gurke S, Barroso JF, Gerdes HH (2008) The art of cellular communication: tunneling nanotubes bridge the divide. Histochem Cell Biol 129:539–550. doi:10.1007/s00418-008-0412-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Suksuphew S, Noisa P (2015) Neural stem cells could serve as a therapeutic material for age-related neurodegenerative diseases. World J Stem Cell 7:502–511. doi:10.4252/wjsc.v7.i2.502

    Article  Google Scholar 

  21. Stenudd M, Sabelstrom H, Frisen J (2015) Role of endogenous neural stem cells in spinal cord injury and repair. JAMA Neurol 72:235–237. doi:10.1001/jamaneurol.2014.2927

    Article  PubMed  Google Scholar 

  22. Austefjord MW, Gerdes HH, Wang X (2014) Tunneling nanotubes: diversity in morphology and structure. Commun Integ Biol 7, e27934. doi:10.4161/cib.27934

    Article  Google Scholar 

  23. Minuth WW, Denk L (2015) When morphogenetic proteins encounter special extracellular matrix and cell-cell connections at the interface of the renal stem/progenitor cell niche. Anatom Cell Biol 48:1–9. doi:10.5115/acb.2015.48.1.1

    Article  Google Scholar 

  24. Abounit S, Zurzolo C (2012) Wiring through tunneling nanotubes–from electrical signals to organelle transfer. J Cell Sci 125:1089–1098. doi:10.1242/jcs.083279

    Article  CAS  PubMed  Google Scholar 

  25. Lee JY (2014) New and old roles of plasmodesmata in immunity and parallels to tunneling nanotubes. Plant Sci Int J Exp Plant Biol 221–222:13–20. doi:10.1016/j.plantsci.2014.01.006

    Google Scholar 

  26. Zhang J, Zhang Y (2013) Membrane nanotubes: novel communication between distant cells. Sci China Life Sci 56:994–999. doi:10.1007/s11427-013-4548-3

    Article  CAS  PubMed  Google Scholar 

  27. Luchetti F et al (2012) Fas signalling promotes intercellular communication in T cells. PLoS One 7, e35766. doi:10.1371/journal.pone.0035766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mulrooney DA, Blaes AH, Duprez D (2012) Vascular injury in cancer survivors. J Cardiovasc Transl Res 5:287–295. doi:10.1007/s12265-012-9358-7

    Article  PubMed  Google Scholar 

  29. Ohno H, Hase K, Kimura S (2010) M-Sec: emerging secrets of tunneling nanotube formation. Commun Integ Biol 3:231–233

    Article  Google Scholar 

  30. Gerdes HH, Rustom A, Wang X (2013) Tunneling nanotubes, an emerging intercellular communication route in development. Mech Dev 130:381–387. doi:10.1016/j.mod.2012.11.006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundations of China (81230027, 81070959, 81471219), the Outstanding Subject Leaders Project of Shanghai (14XD1403400), Technology Support Project of Shanghai (14140903300), and the Science Committee Animal Project of Shanghai (13140903400).

Conflicts of Interest

The authors of this manuscript have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingyuan Liu or Yangtai Guan.

Additional information

Xiaoqing Wang and Xiaowen Yu devoted equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yu, X., Xie, C. et al. Rescue of Brain Function Using Tunneling Nanotubes Between Neural Stem Cells and Brain Microvascular Endothelial Cells. Mol Neurobiol 53, 2480–2488 (2016). https://doi.org/10.1007/s12035-015-9225-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9225-z

Keywords

Navigation