Skip to main content

Advertisement

Log in

Procalcitonin Is a Stronger Predictor of Long-Term Functional Outcome and Mortality than High-Sensitivity C-Reactive Protein in Patients with Ischemic Stroke

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Inflammatory markers have been associated with functional outcome and mortality of stroke. We investigated the changes in procalcitonin (PCT) and high-sensitivity C-reactive protein (Hs-CRP) levels during the acute period of ischemic stroke and evaluated the relationship between these levels and the long-term functional outcome and mortality. We prospectively studied 376 patients with acute ischemic stroke (AIS) who were admitted within 24 h after the onset of symptoms. PCT, Hs-CRP, and NIH Stroke Scale (NIHSS) were measured at the time of admission. Long-term functional outcome were measured by modified Rankin scale (mRS) at 1 year after admission. The correlations between the levels of PCT, Hs-CRP, and mortality at 1 year after stroke onset were analyzed. Patients with poor with functional outcome and non-survivors had significantly increased PCT and Hs-CRP levels on admission. Multivariate logistic regression analysis showed that PCT was an independent prognostic marker of 1-year functional outcome and death [odds ratio (OR) 2.33 (95 % CI, 1.33–3.44) and 3.11 (2.02–4.43), respectively, P < 0.0001 for both, adjusted for age, NIHSS, other predictors, and vascular risk factors] in patients with AIS. The area under the receiver operating characteristic curve of PCT was 0.77 (95 % CI, 0.72–0.83) for functional outcome and 0.88 (95 % CI, 0.84–0.93) for mortality. PCT improved the area under the receiver operating characteristic curve of the NIHSS score for functional outcome from 0.74 (95 % CI, 0.66–0.81) to 0.85 (95 % CI, 0.76–0.92; P < 0.0001) and for mortality from 0.77 (95 % CI, 0.70–0.83) to 0.94 (95 % CI, 0.89–0.97; P < 0.0001). Serum level of PCT at admission was an independent predictor of long-term functional outcome and mortality after ischemic stroke in Chinese sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhang ZG, Wang C, Wang J, Zhang Z, Yang YL, Gao L, Zhang XY, Chang T et al (2014) Prognostic value of mannose-binding lectin: 90-day outcome in patients with acute ischemic stroke. Mol Neurobiol doi:10.1007/s12035-014-8682-0

  2. Slot KB, Berge E, Dorman P, Lewis S, Dennis M, Sandercock P (2008) Impact of functional status at six months on long term survival in patients with ischaemic stroke: prospective cohort studies. BMJ 336:376–379

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tu WJ, Dong X, Zhao SJ, Yang DG, Chen H (2013) Prognostic value of plasma neuroendocrine biomarkers in patients with acute ischaemic stroke. J Neuroendocrinol 25:771–778

    Article  CAS  PubMed  Google Scholar 

  4. Tu WJ, Zhao SJ, Liu TG et al (2013) Combination of high-sensitivity C-reactive protein and homocysteine predicts the short-term outcomes of Chinese patients with acute ischemic stroke. Neurol Res 35(9):912–921

    Article  CAS  PubMed  Google Scholar 

  5. Vibo R, Kõrv J, Roose M, Kampus P, Muda P, Zilmer K, Zilmer M (2007) Free Radic Res. Acute phase proteins and oxidised low-density lipoprotein in association with ischemic stroke subtype, severity and outcome. Free Radic Res 41(3):282–287

    Article  CAS  PubMed  Google Scholar 

  6. Yoldas T, Gonen M, Godekmerdan A, Ilhan F, Bayram E (2007) The serum high-sensitive C reactive protein and homocysteine levels to evaluate the prognosis of acute ischemic stroke. Mediators Inflamm 2007:15929

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shantikumar S, Grant PJ, Catto AJ, Bamford JM, Carter AM (2009) Elevated C-reactive protein and long-term mortality after ischaemic stroke: Relationship with markers of endothelial cell and platelet activation. Stroke 40:977–979

    Article  CAS  PubMed  Google Scholar 

  8. Di Napoli M, Godoy DA, Campi V et al (2011) C-reactive protein level measurement improves mortality prediction when added to the spontaneous intracerebral hemorrhage score. Stroke 42:1230–1236

    Article  PubMed  Google Scholar 

  9. Huang Y, Jing J, Zhao XQ, Wang CX, Wang YL, Liu GF, Wang CJ, Liu LP et al (2012) High-sensitivity C-reactive protein is a strong risk factor for death after acute ischemic stroke among Chinese. CNS Neurosci Ther 18(3):261–266

    Article  CAS  PubMed  Google Scholar 

  10. Maruna P, Nedelnikova K, Gurlich R (2000) Physiology and genetics of procalcitonin. Physiol Res 49:S57–S62

    CAS  PubMed  Google Scholar 

  11. Sakr Y, Sponholz C, Tuche F, Brunkhorst F, Reinhart K (2008) The role of procalcitonin in febrile neutropenic patients: review of the literature. Infection 36:396–407

    Article  CAS  PubMed  Google Scholar 

  12. McGrane S, Girard TD, Thompson JL et al (2011) Procalcitonin and C-reactive protein levels at admission as predictors of duration of acute brain dysfunction in critically ill patients. Crit Care 15(2):R78

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mimoz O, Edouard AR, Samii K et al (1998) Procalcitonin and C-reactive protein during the early posttraumatic systemic inflammatory response syndrome. Intensive Care Med 24(2):185–188

    Article  CAS  PubMed  Google Scholar 

  14. Schiopu A, Hedblad B, Engström G et al (2012) Plasma procalcitonin and the risk of cardiovascular events and death: a prospective population‐based study. J Intern Med 272(5):484–491

    Article  CAS  PubMed  Google Scholar 

  15. Katan M, Moon YP, DeRosa J et al (2014) Procalcitonin, copeptin and midregional pro-atrial natriuretic peptide as markers of ischemic stroke risk: the Northern Manhattan Study. Stroke 45(Suppl 1):A54–A54

    Google Scholar 

  16. Hatano S (1976) Experience from a multicentre stroke register: a preliminary report. Bull World Health Organ 54:541–553

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Adams HP Jr, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, Marsh EE III (1993) Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 24:35–41

    Article  PubMed  Google Scholar 

  18. Bamford J, Sandercock P, Dennis M et al (1991) Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet 337:1521–1526

    Article  CAS  PubMed  Google Scholar 

  19. Brott T, Marler JR, Olinger CP, Adams HP Jr, Tomsick T, Barsan WG et al (1989) Measurements of acute cerebral infarction: lesion size by computed tomography. Stroke 20:871–875

    Article  CAS  PubMed  Google Scholar 

  20. Zhang W, Zhang XA (2014) Prognostic value of serum lipoprotein(a) levels in patients with acute ischemic stroke. Neuroreport 25(4):262–266

    Article  CAS  PubMed  Google Scholar 

  21. Bonita RBR (1988) Modification of Rankin Scale: recovery of motor function after stroke. Stroke 19:1497–1500

    Article  CAS  PubMed  Google Scholar 

  22. Simon L, Gauvin F, Amre DK et al (2004) Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis. Clin Infect Dis 39(2):206–217

    Article  CAS  PubMed  Google Scholar 

  23. Danesh J, Collins R, Appleby P, Peto R (1998) Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary heart disease: meta-analyses of prospective studies. JAMA 279:1477–1482

    Article  CAS  PubMed  Google Scholar 

  24. Elkind MS, Tai W, Coates K, Paik MC, Sacco RL (2006) High-sensitivity C-reactive protein, lipoprotein-associated phospholipase A2, and outcome after ischemic stroke. Arch Intern Med 166(19):2073–2080

    Article  CAS  PubMed  Google Scholar 

  25. Tamaki K, Kogata Y, Sugiyama D, Nakazawa T, Hatachi S, Kageyama G, Nishimura K, Morinobu A et al (2008) Diagnostic accuracy of serum procalcitonin concentrations for detecting systemic bacterial infection in patients with systemic autoimmune diseases. J Rheumatol 35(1):114–119

    CAS  PubMed  Google Scholar 

  26. Schuetz P, Suter-Widmer I, Chaudri A, Christ-Crain M, Zimmerli W et al (2011) Prognostic value of procalcitonin in community-acquired pneumonia. Eur Respir J 37:384–392

    Article  CAS  PubMed  Google Scholar 

  27. Luyt CE, Guérin V, Combes A et al (2005) Procalcitonin kinetics as a prognostic marker of ventilator-associated pneumonia. Am J Respir Crit Care Med 171(1):48–53

    Article  PubMed  Google Scholar 

  28. Fluri F, Morgenthaler NG, Mueller B, Christ-Crain M, Katan M (2012) Copeptin, Procalcitonin and routine inflammatory markers—predictors of infection after stroke. PLoS One 7(10):e48309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sacco RL, Boden-Albala B, Chen X, Lin IF, Kargman DE, Paik MC (1998) Relationship of 6-month functional outcome and stroke severity: implications for acute stroke trials from the Northern Manhattan Stroke Study [abstract]. Neurology 50(suppl 4):A327

    Google Scholar 

  30. Adams HP Jr, Davis PH, Leira EC et al (1999) Baseline NIH Stroke Scale score strongly predicts outcome after stroke: a report of the Trial of Org 10172 in Acute Stroke Treatment (TOAST). Neurology 53:126–131

    Article  CAS  PubMed  Google Scholar 

  31. Castelli GP, Pognani C, Meisner M et al (2004) Procalcitonin and C-reactive protein during systemic inflammatory response syndrome, sepsis and organ dysfunction. Crit Care 8(4):R234

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wheeler AP, Bernard GR (1999) Treating patients with severe sepsis. N Engl J Med 340:207–214

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We also express our gratitude to all the patients who participated in this study and thereby made this work possible.

Authors’ Contributions

Li-Hong Li had full access to all the data in the study and is responsible for the integrity of the data and the accuracy of the data analyses. Chao Wang, Li Gao, and Zhi-Guo Zhang contributed in the study concept and design and drafting of the manuscript. Zhi-Guo Zhang, Yu-Qian Li, Yan-Long Yang, and Tao-Chang Zheng contributed in the acquisition of data. J Chao Wang, Li Gao, Zhi-Guo Zhang, Long-Long Zheng, Xing-Ye Zhang, and Ming-Hao Man contributed in the analysis and interpretation of data. Li-Hong Li contributed in the critical revision of the manuscript for important intellectual content, and administrative support. All authors have read, edited, and approved the final version of the manuscript.

Conflict of Interest

The authors have no relevant potential conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Hong Li.

Additional information

Chao Wang, Li Gao, and Zhi-Guo Zhang contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Gao, L., Zhang, ZG. et al. Procalcitonin Is a Stronger Predictor of Long-Term Functional Outcome and Mortality than High-Sensitivity C-Reactive Protein in Patients with Ischemic Stroke. Mol Neurobiol 53, 1509–1517 (2016). https://doi.org/10.1007/s12035-015-9112-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9112-7

Keywords

Navigation