Skip to main content
Log in

Epigenetic Features Induced by Ischemia-Hypoxia in Cultured Rat Astrocytes

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Epigenetic mechanisms are involved in the maintenance of long-term hypoxia-adapted cellular functions. Astrocytes as the dividing neuroglia cell in the nervous tissue can be activated under hypoxia condition. In the present study, the epigenetic characteristics such as DNA methylation and histone acetylation, as well as S-adenosylmethionine (SAM) role were explored in cultured astrocytes under ischemia-hypoxia (IH) condition. IH could induce the hypermethylation of global DNA and hypoacetylation of histone H3/H4 in an enzyme-dependent manner. c-Jun amino terminal kinase (JNK) signal pathway was involved in this epigenetic change induced by IH. SAM revealed a reverse effect on protein expression without the involvement of methyl donor. On the other hand, neither change of global DNA nor specific gene methylation level was observed in non-dividing neurons under IH condition. In conclusion, a genome-wide adjustment of DNA methylation and histone acetylation under IH conditions should be involved in epigenetic programming of astrocytes. Understanding how ischemia-hypoxia affects global and gene-specific epigenetic programming will provide important insights into the mechanisms of hypoxia-induced cellular changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. White L, Petrovitch H, Hardman J, Nelson J, Davis DG, Ross GW, Masaki K, Launer L, Markesbery WR (2002) Cerebrovascular pathology and dementia in autopsied Honolulu-Asia aging study participants. Ann N Y Acad Sci 977:9–23

    Article  PubMed  Google Scholar 

  2. Aalami OO, Fang TD, Song HM, Nacamuli RP (2003) Physiological features of aging persons. Arch Surg 138(10):1068–1076. doi:10.1001/archsurg.138.10.1068

    Article  PubMed  Google Scholar 

  3. Bakker FC, Klijn CJ, Jennekens-Schinkel A, Kappelle LJ (2000) Cognitive disorders in patients with occlusive disease of the carotid artery: a systematic review of the literature. J Neurol 247(92):669–676

    Article  CAS  PubMed  Google Scholar 

  4. Sekhon LH, Morgan MK, Spence I, Weber NC (1997) Chronic cerebral hypoperfusion: pathological and behavioral consequences. Neurosurgery 40(3):548–556

    CAS  PubMed  Google Scholar 

  5. Tsai YP, Wu KJ (2014) Epigenetic regulation of hypoxia-responsive gene expression: focusing on chromatin and DNA modifications. Int J Cancer 134(2):249–256. doi:10.1002/ijc.28190

    Article  PubMed  Google Scholar 

  6. Watson JA, Watson CJ, McCann A, Baugh J (2010) Epigenetics, the epicenter of the hypoxic response. Epigenetics 5(4):293–296

    Article  CAS  PubMed  Google Scholar 

  7. Chouliaras L, Rutten BP, Kenis G, Peerbooms O, Visser PJ, Verhey F, van Os J, Steinbusch HW, van den Hove DL (2010) Epigenetic regulation in the pathophysiology of Alzheimer's disease. Prog Neurobiol 90(4):498–510. doi:10.1016/j.pneurobio.2010.01.002

    Article  CAS  PubMed  Google Scholar 

  8. Marques SC, Lemos R, Ferreiro E, Martins M, de Mendonca A, Santana I, Outeiro TF, Pereira CM (2012) Epigenetic regulation of BACE1 in Alzheimer's disease patients and in transgenic mice. Neuroscience 220:256–266. doi:10.1016/j.neuroscience.2012.06.029

    Article  CAS  PubMed  Google Scholar 

  9. Johnson AB, Denko N, Barton MC (2008) Hypoxia induces a novel signature of chromatin modifications and global repression of transcription. Mutat Res 640(1–2):174–179. doi:10.1016/j.mrfmmm.2008.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447(7143):433–440. doi:10.1038/nature05919

    Article  CAS  PubMed  Google Scholar 

  11. Esteller M (2008) Epigenetics in cancer. N Engl J Med 358(11):1148–1159. doi:10.1056/NEJMra072067

    Article  CAS  PubMed  Google Scholar 

  12. Gerhauser C (2013) Cancer chemoprevention and nutriepigenetics: state of the art and future challenges. Top Curr Chem 329:73–132. doi:10.1007/128_2012_360

    Article  CAS  PubMed  Google Scholar 

  13. Marques SC, Oliveira CR, Pereira CM, Outeiro TF (2011) Epigenetics in neurodegeneration: a new layer of complexity. Prog Neuropsychopharmacol Biol Psychiatry 35(2):348–355. doi:10.1016/j.pnpbp.2010.08.008

    Article  CAS  PubMed  Google Scholar 

  14. Urdinguio RG, Sanchez-Mut JV, Esteller M (2009) Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol 8(11):1056–1072. doi:10.1016/S1474-4422(09)70262-5

    Article  CAS  PubMed  Google Scholar 

  15. Bertram L, Tanzi RE (2005) The genetic epidemiology of neurodegenerative disease. J Clin Invest 115(6):1449–1457. doi:10.1172/JCI24761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50(4):427–434. doi:10.1002/glia.20207

    Article  PubMed  Google Scholar 

  17. Pekny M, Wilhelmsson U, Pekna M (2014) The dual role of astrocyte activation and reactive gliosis. Neurosci Lett 565:30–38. doi:10.1016/j.neulet.2013.12.071

    Article  CAS  PubMed  Google Scholar 

  18. Verkhratsky A, Olabarria M, Noristani HN, Yeh CY, Rodriguez JJ (2010) Astrocytes in Alzheimer's disease. Neurotherapeutics 7(4):399–412. doi:10.1016/j.nurt.2010.05.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu X, Sun J, Zhang X, Li X, Liu Z, Yang Q, Li L (2014) Epigenetic signature of chronic cerebral hypoperfusion and beneficial effects of S-adenosylmethionine in rats. Mol Neurobiol. doi:10.1007/s12035-014-8698-5

    Google Scholar 

  20. Gu X, Sun J, Li S, Wu X, Li L (2013) Oxidative stress induces DNA demethylation and histone acetylation in SH-SY5Y cells: potential epigenetic mechanisms in gene transcription in Aβ production. Neurobiol Aging 34(4):1069–1079. doi:10.1016/j.neurobiolaging.2012.10.013

    Article  CAS  PubMed  Google Scholar 

  21. Bhattacharya SK, Ramchandani S, Cervoni N, Szyf M (1999) A mammalian protein with specific demethylase activity for mCpG DNA. Nature 397(6720):579–583. doi:10.1038/17533

    Article  CAS  PubMed  Google Scholar 

  22. Tanaka T, Kato H, Kojima I, Ohse T, Son D, Tawakami T, Yatagawa T, Inagi R, Fujita T, Nangaku M (2006) Hypoxia and expression of hypoxia-inducible factor in the aging kidney. J Gerontol A Biol Sci Med Sci 61(8):795–805

    Article  PubMed  Google Scholar 

  23. Xia X, Lemieux ME, Li W, Carroll JS, Brown M, Liu XS, Kung AL (2009) Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proc Natl Acad Sci U S A 106(11):4260–4265. doi:10.1073/pnas.0810067106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Watson JA, Watson CJ, McCrohan AM, Woodfine K, Tosetto M, McDaid J, Gallagher E, Betts D, Baugh J, O'Sullivan J, Murrell A, Watson RW, McCann A (2009) Generation of an epigenetic signature by chronic hypoxia in prostate cells. Hum Mol Genet 18(19):3594–3604. doi:10.1093/hmg/ddp307

    Article  CAS  PubMed  Google Scholar 

  25. Shahrzad S, Bertrand K, Minhas K, Coomber BL (2007) Induction of DNA hypomethylation by tumor hypoxia. Epigenetics 2(2):119–125

    Article  PubMed  Google Scholar 

  26. Varela-Rey M, Iruarrizaga-Lejarreta M, Lozano JJ, Aransay AM, Fernandez AF, Lavin JL, Mosen-Ansorena D, Berdasco M, Turmaine M, Luka Z, Wagner C, Lu SC, Esteller M, Mirsky R, Jessen KR, Fraga MF, Martinez-Chantar ML, Mato JM, Woodhoo A (2014) S-adenosylmethionine levels regulate the Schwann cell DNA methylome. Neuron 81(5):1024–1039. doi:10.1016/j.neuron.2014.01.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tohgi H, Utsugisawa K, Nagane Y, Yoshimura M, Genda Y, Ukitsu M (1999) Reduction with age in methylcytosine in the promoter region -224 approximately -101 of the amyloid precursor protein gene in autopsy human cortex. Brain Res Mol Brain Res 70(2):288–292

    Article  CAS  PubMed  Google Scholar 

  28. Mastroeni D, Grover A, Delvaux E, Whiteside C, Coleman PD, Rogers J (2011) Epigenetic mechanisms in Alzheimer's disease. Neurobiol Aging 32(7):1161–1180. doi:10.1016/j.neurobiolaging.2010.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang X, Le W (2010) Pathological role of hypoxia in Alzheimer's disease. Exp Neurol 223(2):299–303. doi:10.1016/j.expneurol.2009.07.033

    Article  CAS  PubMed  Google Scholar 

  30. Peers C, Dallas ML, Boycott HE, Scragg JL, Pearson HA, Boyle JP (2009) Hypoxia and neurodegeneration. Ann N Y Acad Sci 1177:169–177. doi:10.1111/j.1749-6632.2009.05026.x

    Article  CAS  PubMed  Google Scholar 

  31. Pande M, Hur J, Hong Y, Backus C, Hayes JM, Oh SS, Kretzler M, Feldman EL (2011) Transcriptional profiling of diabetic neuropathy in the BKS db/db mouse: a model of type 2 diabetes. Diabetes 60(7):1981–1989. doi:10.2337/db10-1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shea TB, Chan A (2008) S-adenosyl methionine: a natural therapeutic agent effective against multiple hallmarks and risk factors associated with Alzheimer's disease. J Alzheimers Dis 13(1):67–70

    Article  CAS  PubMed  Google Scholar 

  33. Lee S, Lemere CA, Frost JL, Shea TB (2012) Dietary supplementation with S-adenosyl methionine delayed amyloid-β and tau pathology in 3xTg-AD mice. J Alzheimers Dis 28(2):423–431. doi:10.3233/JAD-2011-111025

    CAS  PubMed  Google Scholar 

  34. Chiang PK, Gordon RK, Tal J, Zeng GC, Doctor BP, Pardhasaradhi K, McCann PP (1996) S-Adenosylmethionine and methylation. FASEB J 10(4):471–480

    CAS  PubMed  Google Scholar 

  35. Medina M, Urdiales JL, Amores-Sanchez MI (2001) Roles of homocysteine in cell metabolism: old and new functions. Eur J Biochem 268(14):3871–3882

    Article  CAS  PubMed  Google Scholar 

  36. Shearstone JR, Pop R, Bock C, Boyle P, Meissner A, Socolovsky M (2011) Global DNA demethylation during mouse erythropoiesis in vivo. Science 334(6057):799–802. doi:10.1126/science.1207306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee ST, Xiao Y, Muench MO, Xiao J, Fomin ME, Wiencke JK, Zheng S, Dou X, de Smith A, Chokkalingam A, Buffler P, Ma X, Wiemels JL (2012) A global DNA methylation and gene expression analysis of early human B-cell development reveals a demethylation signature and transcription factor network. Nucleic Acids Res 40(22):11339–11351. doi:10.1093/nar/gks957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, Volinia S, Guler G, Morrison CD, Chan KK, Marcucci G, Calin GA, Huebner K, Croce CM (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A 104(40):15805–15810. doi:10.1073/pnas.0707628104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bottiglieri T (2002) S-Adenosyl-l-methionine (SAMe): from the bench to the bedside–molecular basis of a pleiotrophic molecule. Am J Clin Nutr 76(5):1151S–1157S

    CAS  PubMed  Google Scholar 

  40. Lieber CS, Packer L (2002) S-Adenosylmethionine: molecular, biological, and clinical aspects—an introduction. Am J Clin Nutr 76(5):1148S–1150S

    CAS  PubMed  Google Scholar 

  41. Lu SC (2000) S-Adenosylmethionine. Int J Biochem Cell Biol 32(4):391–395

    Article  CAS  PubMed  Google Scholar 

  42. Chervona Y, Costa M (2012) The control of histone methylation and gene expression by oxidative stress, hypoxia, and metals. Free Radic Biol Med 53(5):1041–1047. doi:10.1016/j.freeradbiomed.2012.07.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. MacDonald JL, Roskams AJ (2009) Epigenetic regulation of nervous system development by DNA methylation and histone deacetylation. Prog Neurobiol 88(3):170–183

    Article  CAS  PubMed  Google Scholar 

  44. Quiroz-Baez R, Rojas E, Arias C (2009) Oxidative stress promotes JNK-dependent amyloidogenic processing of normally expressed human APP by differential modification of alpha-, beta- and gamma-secretase expression. Neurochem Int 55(7):662–670. doi:10.1016/j.neuint.2009.06.012

    Article  CAS  PubMed  Google Scholar 

  45. Guglielmotto M, Giliberto L, Tamagno E, Tabaton M (2010) Oxidative stress mediates the pathogenic effect of different Alzheimer's disease risk factors. Front Aging Neurosci 2:3. doi:10.3389/neuro.24.003.2010

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hermann A, Gowher H, Jeltsch A (2004) Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci 61(19–20):2571–2587. doi:10.1007/s00018-004-4201-1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation (No. 81070926 and No. 81271310).

Conflict of Interest

The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Li.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Schematic diagram of APP and BACE1 genes. The transcripts were composed of a 5’-untranslated region (UTR) with internal promoter activity, open reading frame (ORF), and a 3’-UTR. (A) The sequence represents a 240-bp fragment (between 26 and 266) in APP gene. (B) The sequence represents a 250-bp fragment (between -318 and -58) in BACE1 gene. The number refers to the location of cytosine-guanine (CpG) sites and underlying highlights of CpG sites include more than 1 CpG site tested at the same time. (GIF 136 kb)

High Resolution Image (TIFF 2716 kb)

Supplementary Fig. 2

Micrographs of cultured astrocytes and neurons. (A) Representative cultured astrocytes were immunocytochemically stained against GFAP (green). (B) Representative cultured neurons were immunocytochemically stained against Tuj1 (green). Scale bar = 50 μm. (GIF 71 kb)

High Resolution Image (TIFF 4917 kb)

Supplementary Fig. 3

Evaluation of cell viability for cultured cells under IH treatment. The cultured cells subjected to IH treatment were double stained by Hoechst 33258 (blue) and PI (red). (A) Control, (B) IH treatment for 24 h, (C) IH treatment for 48 h, (D) IH treatment for 72 h. Scale bar = 100 μm. (E) The number of dead cells after IH treatment. The data were expressed as mean ± SD. *p = < 0.05; **p < 0.01 vs. control group (n = 3). (GIF 147 kb)

High Resolution Image (TIFF 9822 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Wu, X., Sun, J. et al. Epigenetic Features Induced by Ischemia-Hypoxia in Cultured Rat Astrocytes. Mol Neurobiol 53, 436–445 (2016). https://doi.org/10.1007/s12035-014-9027-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-9027-8

Keywords

Navigation