Skip to main content
Log in

Cannabidiol Exposure During Neuronal Differentiation Sensitizes Cells Against Redox-Active Neurotoxins

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cannabidiol (CBD), one of the most abundant Cannabis sativa-derived compounds, has been implicated with neuroprotective effect in several human pathologies. Until now, no undesired side effects have been associated with CBD. In this study, we evaluated CBD’s neuroprotective effect in terminal differentiation (mature) and during neuronal differentiation (neuronal developmental toxicity model) of the human neuroblastoma SH-SY5Y cell line. A dose-response curve was performed to establish a sublethal dose of CBD with antioxidant activity (2.5 μM). In terminally differentiated SH-SY5Y cells, incubation with 2.5 μM CBD was unable to protect cells against the neurotoxic effect of glycolaldehyde, methylglyoxal, 6-hydroxydopamine, and hydrogen peroxide (H2O2). Moreover, no difference in antioxidant potential and neurite density was observed. When SH-SY5Y cells undergoing neuronal differentiation were exposed to CBD, no differences in antioxidant potential and neurite density were observed. However, CBD potentiated the neurotoxicity induced by all redox-active drugs tested. Our data indicate that 2.5 μM of CBD, the higher dose tolerated by differentiated SH-SY5Y neuronal cells, does not provide neuroprotection for terminally differentiated cells and shows, for the first time, that exposure of CBD during neuronal differentiation could sensitize immature cells to future challenges with neurotoxins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cassol-Jr OJ, Comim CM, Silva BR et al (2010) Treatment with cannabidiol reverses oxidative stress parameters, cognitive impairment and mortality in rats submitted to sepsis by cecal ligation and puncture. Brain Res 1348:128–138. doi:10.1016/j.brainres.2010.06.023

    Article  PubMed  Google Scholar 

  2. Karniol IG, Shirakawa I, Kasinski N et al (1974) Cannabidiol interferes with the effects of delta 9-tetrahydrocannabinol in man. Eur J Pharmacol 28:172–177

    Article  CAS  PubMed  Google Scholar 

  3. Grlic L (1976) A comparative study on some chemical and biological characteristics of various samples of cannabis resin. Bull Narcotics 14:37–46

    Google Scholar 

  4. Izzo A, Borrelli F, Capasso R (2009) Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb. Trends Pharmacol Sci 30:6147. doi:10.1016/j.tips.2009.10.007

    Article  Google Scholar 

  5. Pertwee RG (2012) Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities. Philos Trans R Soc Lond B Biol Sci 367:3353–3363. doi:10.1098/rstb.2011.0381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Luchicchi A, Pistis M (2012) Anandamide and 2-arachidonoylglycerol: pharmacological properties, functional features, and emerging specificities of the two major endocannabinoids. Mol Neurobiol 46:374–392. doi:10.1007/s12035-012-8299-0

    Article  CAS  PubMed  Google Scholar 

  7. Gaoni Y, Mechoulam R (1971) Isolation and structure of delta-1-tetrahydrocannabinol and other neutral cannabinoids from hashish. J Am Chem Soc 93:217–224. doi:10.1021/ja00730a036

    Article  CAS  PubMed  Google Scholar 

  8. Howlett AC, Blume LC, Dalton GD (2010) CB(1) cannabinoid receptors and their associated proteins. Curr Med Chem 17:1382–1393. doi:10.2174/092986710790980023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pertwee RG, Ross RA, Craib SJ, Thomas A (2002) (−)-Cannabidiol antagonizes cannabinoid receptor agonists and noradrenaline in the mouse vas deferens. Eur J Pharmacol 456:99–106

    Article  CAS  PubMed  Google Scholar 

  10. Galve-Roperh I, Chiurchiù V, Díaz-Alonso J et al (2013) Progress in lipid research cannabinoid receptor signaling in progenitor/stem cell proliferation and differentiation. Prog Lipid Res 52:633–650. doi:10.1016/j.plipres.2013.05.004

    Article  CAS  PubMed  Google Scholar 

  11. Begbie J, Doherty P, Graham A (2004) Cannabinoid receptor, CB1, expression follows neuronal differentiation in the early chick embryo. J Anat 205:213–218. doi:10.1111/j.0021-8782.2004.00325.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Palazuelos J, Aguado T, Egia A et al (2006) Non-psychoactive CB2 cannabinoid agonists stimulate neural progenitor proliferation. FASEB J 20:2405–2407. doi:10.1096/fj.06-6164fje

    Article  CAS  PubMed  Google Scholar 

  13. Watson S, Chambers D, Hobbs C et al (2008) The endocannabinoid receptor, CB1, is required for normal axonal growth and fasciculation. Mol Cell Neurosci 38:89–97. doi:10.1016/j.mcn.2008.02.001

    Article  CAS  PubMed  Google Scholar 

  14. Bossong MG, Niesink RJM (2010) Adolescent brain maturation, the endogenous cannabinoid system and the neurobiology of cannabis-induced schizophrenia. Prog Neurobiol 92:370–385. doi:10.1016/j.pneurobio.2010.06.010

    Article  CAS  PubMed  Google Scholar 

  15. Fernández-Ruiz J, Sagredo O, Pazos MR et al (2013) Cannabidiol for neurodegenerative disorders: important new clinical applications for this phytocannabinoid? Br J Clin Pharmacol 75:323–333. doi:10.1111/j.1365-2125.2012.04341.x

    Article  PubMed  Google Scholar 

  16. Borges RS, Batista J Jr, Viana RB et al (2013) Understanding the molecular aspects of tetrahydrocannabinol and cannabidiol as antioxidants. Molecules 18:12663–12674. doi:10.3390/molecules181012663

    Article  CAS  PubMed  Google Scholar 

  17. Alvarez FJ, Lafuente H, Rey-Santano MC et al (2008) Neuroprotective effects of the nonpsychoactive cannabinoid cannabidiol in hypoxic-ischemic newborn piglets. Pediatr Res 64:653–658. doi:10.1203/PDR.0b013e318186e5dd

    Article  CAS  PubMed  Google Scholar 

  18. Lafuente H, Alvarez FJ, Pazos MR et al (2011) Cannabidiol reduces brain damage and improves functional recovery after acute hypoxia-ischemia in newborn pigs. Pediatr Res 70:272–277. doi:10.1203/PDR.0b013e3182276b11

    Article  CAS  PubMed  Google Scholar 

  19. Pazos MR, Cinquina V, Gómez A et al (2012) Cannabidiol administration after hypoxia-ischemia to newborn rats reduces long-term brain injury and restores neurobehavioral function. Neuropharmacology 63:776–783. doi:10.1016/j.neuropharm.2012.05.034

    Article  CAS  PubMed  Google Scholar 

  20. Crippa JAS, Zuardi AW, Hallak JEC (2010) Therapeutical use of the cannabinoids in psychiatry. Rev Bras Psiquiatr 32(Suppl 1):S56–S66. doi:10.1590/S1516-44462010000500009

    Article  PubMed  Google Scholar 

  21. Gordon E, Devinsky O (2001) Alcohol and marijuana: effects on epilepsy and use by patients with epilepsy. Epilepsia 42:1266–1272

    Article  CAS  PubMed  Google Scholar 

  22. Lastres-Becker I, Molina-Holgado F, Ramos A et al (2005) Cannabinoids provide neuroprotection against 6-hydroxydopamine toxicity in vivo and in vitro: relevance to Parkinson’s disease. Neurobiol Dis 19:96–107. doi:10.1016/j.nbd.2004.11.009

    Article  CAS  PubMed  Google Scholar 

  23. Harvey BS, Ohlsson KS, Mååg JLV et al (2012) Contrasting protective effects of cannabinoids against oxidative stress and amyloid-β evoked neurotoxicity in vitro. Neurotoxicology 33:138–146. doi:10.1016/j.neuro.2011.12.015

    Article  CAS  PubMed  Google Scholar 

  24. Carroll CB, Zeissler M-L, Hanemann CO, Zajicek JP (2012) Δ9-Tetrahydrocannabinol (Δ9-THC) exerts a direct neuroprotective effect in a human cell culture model of Parkinson’s disease. Neuropathol Appl Neurobiol 38:535–547. doi:10.1111/j.1365-2990.2011.01248.x

    Article  CAS  PubMed  Google Scholar 

  25. Da Silva VK, de Freitas BS, da Silva Dornelles A et al (2013) Cannabidiol normalizes caspase 3, synaptophysin, and mitochondrial fission protein DNM1L expression levels in rats with brain iron overload: implications for neuroprotection. Mol Neurobiol. doi:10.1007/s12035-013-8514-7

    Google Scholar 

  26. Fagherazzi EV, Garcia VA, Maurmann N et al (2012) Memory-rescuing effects of cannabidiol in an animal model of cognitive impairment relevant to neurodegenerative disorders. Psychopharmacology (Berl) 219:1133–1140. doi:10.1007/s00213-011-2449-3

    Article  CAS  Google Scholar 

  27. Mechoulam R, Peters M, Murillo-Rodriguez E, Hanuš LO (2007) Cannabidiol—recent advances. Chem Biodivers 4:1678–1692. doi:10.1002/cbdv.200790147

    Article  CAS  PubMed  Google Scholar 

  28. Bergamaschi MM, Queiroz RHC, Zuardi AW, Crippa JAS (2011) Safety and side effects of cannabidiol, a Cannabis sativa constituent. Curr Drug Saf 6:237–249

    Article  CAS  PubMed  Google Scholar 

  29. Porter BE, Jacobson C (2013) Report of a parent survey of cannabidiol-enriched cannabis use in pediatric treatment-resistant epilepsy. Epilepsy Behav 29:574–577. doi:10.1016/j.yebeh.2013.08.037

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ramos A, Decio A, Mechoulam R et al (2007) Cannabidiol reduced the striatal atrophy caused 3-nitropropionic acid in vivo by mechanisms independent of the activation of cannabinoid, vanilloid TRPV 1 and adenosine A 2A receptors. Eur J Neurosci 26:843–851. doi:10.1111/j.1460-9568.2007.05717.x

    Article  PubMed  Google Scholar 

  31. Valdeolivas S, Satta V, Pertwee RG et al (2012) Sativex-like combination of phytocannabinoids is neuroprotective in malonate-lesioned rats, an inflammatory model of Huntington’s disease: role of CB(1) and CB(2) receptors. ACS Chem Neurosci 3:400–406. doi:10.1021/cn200114w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zuardi AW (2008) Cannabidiol: from an inactive cannabinoid to a drug with wide spectrum of action. Rev Bras Psiquiatr 30:271–280

    Article  PubMed  Google Scholar 

  33. Bal-Price AK, Suñol C, Weiss DG et al (2008) Application of in vitro neurotoxicity testing for regulatory purposes: symposium III summary and research needs. Neurotoxicology 29:520–531. doi:10.1016/j.neuro.2008.02.008

    Article  PubMed  Google Scholar 

  34. Radio NM, Mundy WR (2008) Developmental neurotoxicity testing in vitro: models for assessing chemical effects on neurite outgrowth. Neurotoxicology 29:361–376. doi:10.1016/j.neuro.2008.02.011

    Article  CAS  PubMed  Google Scholar 

  35. Lopes FM, Schröder R, da Frota MLC et al (2010) Comparison between proliferative and neuron-like SH-SY5Y cells as an in vitro model for Parkinson disease studies. Brain Res 1337:85–94. doi:10.1016/j.brainres.2010.03.102

    Article  CAS  PubMed  Google Scholar 

  36. Korecka JA, van Kesteren RE, Blaas E et al (2013) Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. doi:10.1371/journal.pone.0063862

    PubMed  PubMed Central  Google Scholar 

  37. Lopes FM, Londero GF, de Medeiros LM et al (2012) Evaluation of the neurotoxic/neuroprotective role of organoselenides using differentiated human neuroblastoma SH-SY5Y cell line challenged with 6-hydroxydopamine. Neurotox Res 22:138–149. doi:10.1007/s12640-012-9311-1

    Article  CAS  PubMed  Google Scholar 

  38. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  39. Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27:612–616. doi:10.1016/s0891-5849(99)00107-0

    Article  CAS  PubMed  Google Scholar 

  40. Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142:231–255. doi:10.1038/sj.bjp.0705776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lissi E, Salim-Hanna M, Pascual C, del Castillo MD (1995) Evaluation of total antioxidant potential (TRAP) and total antioxidant reactivity from luminol-enhanced chemiluminescence measurements. Free Radic Biol Med 18:153–158. doi:10.1016/0891-5849(94)00117-3

    Article  CAS  PubMed  Google Scholar 

  42. Dresch MTK, Rossato SB, Kappel VD et al (2009) Optimization and validation of an alternative method to evaluate total reactive antioxidant potential. Anal Biochem 385:107–114. doi:10.1016/j.ab.2008.10.036

    Article  CAS  PubMed  Google Scholar 

  43. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77. doi:10.1016/0003-9861(59)90090-6

    Article  CAS  PubMed  Google Scholar 

  44. Nishida Y, Adati N, Ozawa R et al (2008) Identification and classification of genes regulated by phosphatidylinositol 3-kinase- and TRKB-mediated signalling pathways during neuronal differentiation in two subtypes of the human neuroblastoma cell line SH-SY5Y. BMC Res Notes 1:95. doi:10.1186/1756-0500-1-95

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) Affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20:307–315. doi:10.1093/bioinformatics/btg405

    Article  CAS  PubMed  Google Scholar 

  46. Smyth GK (2005) limma: linear models for microarray data. Bioinforma. Comput. Biol. Solut. Using R Bioconductor. pp 397–420

  47. Castro MAA, Wang X, Fletcher MNC et al (2012) RedeR: R/Bioconductor package for representing modular structures, nested networks and multiple levels of hierarchical associations. Genome Biol 13:R29. doi:10.1186/gb-2012-13-4-r29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schapira AHV (2008) Mitochondrial dysfunction in neurodegenerative diseases. Neurochem Res 33:2502–2509. doi:10.1007/s11064-008-9855-x

    Article  CAS  PubMed  Google Scholar 

  49. Beisswenger PJ, Drummond KS, Nelson RG et al (2005) Susceptibility to diabetic nephropathy is related to dicarbonyl and oxidative stress. Diabetes 54:3274–3281. doi:10.2337/diabetes.54.11.3274

    Article  CAS  PubMed  Google Scholar 

  50. Gomez-Lazaro M, Bonekamp NA, Galindo MF et al (2008) 6-Hydroxydopamine (6-OHDA) induces Drp1-dependent mitochondrial fragmentation in SH-SY5Y cells. Free Radic Biol Med 44:1960–1969. doi:10.1016/j.freeradbiomed.2008.03.009

    Article  CAS  PubMed  Google Scholar 

  51. Lehmensiek V, Tan E-M, Liebau S et al (2006) Dopamine transporter-mediated cytotoxicity of 6-hydroxydopamine in vitro depends on expression of mutant alpha-synucleins related to Parkinson’s disease. Neurochem Int 48:329–340. doi:10.1016/j.neuint.2005.11.008

    Article  CAS  PubMed  Google Scholar 

  52. Turkez H, Sozio P, Geyikoglu F et al (2013) Neuroprotective effects of farnesene against hydrogen peroxide-induced neurotoxicity in vitro. Cell Mol Neurobiol 34:101–111. doi:10.1007/s10571-013-9991-y

    Article  PubMed  Google Scholar 

  53. Huang X, Moir RD, Tanzi RE et al (2004) Redox-active metals, oxidative stress, and Alzheimer’s disease pathology. Ann N Y Acad Sci 1012:153–163

    Article  CAS  PubMed  Google Scholar 

  54. Huang S-L, He H-B, Zou K et al (2014) Protective effect of tomatine against hydrogen peroxide-induced neurotoxicity in neuroblastoma (SH-SY5Y) cells. J Pharm Pharmacol. doi:10.1111/jphp.12205

    Google Scholar 

  55. Turkez H, Togar B, Di Stefano A et al (2014) Protective effects of cyclosativene on H2O 2-induced injury in cultured rat primary cerebral cortex cells. Cytotechnology. doi:10.1007/s10616-013-9685-9

    Google Scholar 

  56. Wolf SA, Bick-Sander A, Fabel K et al (2010) Cannabinoid receptor CB1 mediates baseline and activity-induced survival of new neurons in adult hippocampal neurogenesis. Cell Commun Signal 8:12. doi:10.1186/1478-811X-8-12

    Article  PubMed  PubMed Central  Google Scholar 

  57. Paria BC, Ma W, Andrenyak DM et al (1998) Effects of cannabinoids on preimplantation mouse embryo development and implantation are mediated by brain-type cannabinoid receptors. Biol Reprod 58:1490–1495

    Article  CAS  PubMed  Google Scholar 

  58. Wang J, Paria BC, Dey SK, Armant DR (1999) Stage-specific excitation of cannabinoid receptor exhibits differential effects on mouse embryonic development. Biol Reprod 60:839–844

    Article  CAS  PubMed  Google Scholar 

  59. MacCarrone M, De Felici M, Bari M et al (2000) Down-regulation of anandamide hydrolase in mouse uterus by sex hormones. Eur J Biochem 267:2991–2997

    Article  CAS  PubMed  Google Scholar 

  60. Nones J, Spohr TCLS, Furtado DR et al (2010) Cannabinoids modulate cell survival in embryoid bodies. Cell Biol Int 34:399–408. doi:10.1042/CBI20090036

    Article  CAS  PubMed  Google Scholar 

  61. Harkany T, Guzmán M, Galve-Roperh I et al (2007) The emerging functions of endocannabinoid signaling during CNS development. Trends Pharmacol Sci 28:83–92. doi:10.1016/j.tips.2006.12.004

    Article  CAS  PubMed  Google Scholar 

  62. Díaz-Alonso J, Aguado T, Wu C-S et al (2012) The CB(1) cannabinoid receptor drives corticospinal motor neuron differentiation through the Ctip2/Satb2 transcriptional regulation axis. J Neurosci 32:16651–16665. doi:10.1523/JNEUROSCI.0681-12.2012

    Article  PubMed  PubMed Central  Google Scholar 

  63. Jiang S, Fu Y, Williams J et al (2007) Expression and function of cannabinoid receptors CB1 and CB2 and their cognate cannabinoid ligands in murine embryonic stem cells. PLoS ONE 2:e641. doi:10.1371/journal.pone.0000641

    Article  PubMed  PubMed Central  Google Scholar 

  64. Oh H-A, Kwon S, Choi S et al (2013) Uncovering a role for endocannabinoid signaling in autophagy in preimplantation mouse embryos. Mol Hum Reprod 19:93–101. doi:10.1093/molehr/gas049

    Article  CAS  PubMed  Google Scholar 

  65. Zhuang S-Y, Bridges D, Grigorenko E et al (2005) Cannabinoids produce neuroprotection by reducing intracellular calcium release from ryanodine-sensitive stores. Neuropharmacology 48:1086–1096. doi:10.1016/j.neuropharm.2005.01.005

    Article  CAS  PubMed  Google Scholar 

  66. Englund A, Morrison PD, Nottage J et al (2012) Cannabidiol inhibits THC-elicited paranoid symptoms and hippocampal-dependent memory impairment. J Psychopharmacol. doi:10.1177/0269881112460109

    PubMed  Google Scholar 

  67. Huizink AC (2013) Prenatal cannabis exposure and infant outcomes: overview of studies. Prog Neuropsychopharmacol Biol Psychiatry. doi:10.1016/j.pnpbp.2013.09.014

    PubMed  Google Scholar 

  68. Zhornitsky S, Potvin S (2012) Cannabidiol in humans—the quest for therapeutic targets. Pharmaceuticals (Basel) 5:529–552. doi:10.3390/ph5050529

    Article  CAS  Google Scholar 

  69. Ranganathan M, D’Souza DC (2006) The acute effects of cannabinoids on memory in humans: a review. Psychopharmacology (Berl) 188:425–444. doi:10.1007/s00213-006-0508-y

    Article  CAS  Google Scholar 

  70. Velez-Pardo C, Jimenez-Del-Rio M, Lores-Arnaiz S, Bustamante J (2010) Protective effects of the synthetic cannabinoids CP55,940 and JWH-015 on rat brain mitochondria upon paraquat exposure. Neurochem Res 35:1323–1332. doi:10.1007/s11064-010-0188-1

    Article  CAS  PubMed  Google Scholar 

  71. Elsohly MA, Gul W, Wanas AS, Radwan MM (2014) Synthetic cannabinoids: analysis and metabolites. Life Sci. doi:10.1016/j.lfs.2013.12.212

    PubMed  Google Scholar 

  72. Lax P, Esquiva G, Altavilla C, Cuenca N (2014) Neuroprotective effects of the cannabinoid agonist HU210 on retinal degeneration. Exp Eye Res. doi:10.1016/j.exer.2014.01.019

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank MSc. Moema Queiroz Vieira from the Centro de Microscopia Eletronica (CME/UFRGS) for expert assistance with scanning electron microscopy (SEM). This work was supported by grants from the Brazilians agencies MCT/CNPq Universal (470306/2011-4), PRONEX/FAPERGS (1000274), PRONEM/FAPERGS (11/2032-5), PqG/FAPERGS (2414-2551/12-8), and MCT/CNPq INCT-TM (573671/2008-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio Klamt.

Additional information

Author Contributions

P.S., L.M.M., I.J.B., and F.M.L. performed experiments. M.A.A.C., M.A.B..., and F.K. analyzed and interpreted the data. F.K., J.A.S.C., and F.K. conceived and designed the experiments. P.S., M.A.A.C., R.B.P., and F.K. wrote the manuscript.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schönhofen, P., de Medeiros, L.M., Bristot, I.J. et al. Cannabidiol Exposure During Neuronal Differentiation Sensitizes Cells Against Redox-Active Neurotoxins. Mol Neurobiol 52, 26–37 (2015). https://doi.org/10.1007/s12035-014-8843-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8843-1

Keywords

Navigation