Skip to main content
Log in

Inhibition of H3K4me2 Demethylation Protects Auditory Hair Cells from Neomycin-Induced Apoptosis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Aminoglycoside-induced hair cell loss is a major cause of hearing impairment in children and deserves more attention in medical research. Epigenetic mechanisms have been shown to protect hair cells from ototoxic drugs. In this study, we focused on the role of dimethylated histone H3K4 (H3K4me2) in hair cell survival. To investigate the effects of lysine-specific demethylase 1 (LSD1)—the histone demethylase primarily responsible for demethylating H3K4me2—on neomycin-induced hair cell loss, isolated cochleae were pretreated with LSD1 inhibitors followed by neomycin exposure. There was a severe loss of hair cells in the organ of Corti after neomycin exposure, and inhibition of LSD1 significantly protected against neomycin-induced hair cell loss. H3K4me2 expression in the nuclei of hair cells decreased after exposure to neomycin, and blocking the decreased expression of H3K4me2 with LSD1 inhibitors prevented hair cell loss. Local delivery of these inhibitors in vivo also protected hair cells from neomycin-induced ototoxicity and maintained the hearing threshold in mice as determined by auditory brain stem response. This inhibition of neomycin-induced apoptosis occurs via reduced caspase-3 activation. Together, our findings demonstrate the protective role for H3K4me2 against neomycin-induced hair cell loss and hearing loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mills JH, Going JA (1982) Review of environmental factors affecting hearing. Environ Health Perspect 44:119–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Henley CM, Rybak LP (1995) Ototoxicity in developing mammals. Brain Res Brain Res Rev 20(1):68–90

    Article  CAS  PubMed  Google Scholar 

  3. Schatz A, Bugie E, Waksman SA (2005) Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria. Clin Orthop Relat Res 1944(437):3–6

    Article  Google Scholar 

  4. Forge A, Schacht J (2000) Aminoglycoside antibiotics. Audiol Neurootol 5(1):3–22

    Article  CAS  PubMed  Google Scholar 

  5. Perletti G, Vral A, Patrosso MC, Marras E, Ceriani I, Willems P, Fasano M, Magri V (2008) Prevention and modulation of aminoglycoside ototoxicity (review). Mol Med Rep 1(1):3–13

    CAS  PubMed  Google Scholar 

  6. Kooistra SM, Helin K (2012) Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Biol 13(5):297–311. doi:10.1038/nrm3327

    CAS  PubMed  Google Scholar 

  7. Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15(18):2343–2360. doi:10.1101/gad.927301

    Article  CAS  PubMed  Google Scholar 

  8. Pattaroni C, Jacob C (2013) Histone methylation in the nervous system: functions and dysfunctions. Mol Neurobiol 47(2):740–756. doi:10.1007/s12035-012-8376-4

    Article  CAS  PubMed  Google Scholar 

  9. Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13(5):343–357. doi:10.1038/nrg3173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rugg-Gunn PJ, Cox BJ, Ralston A, Rossant J (2010) Distinct histone modifications in stem cell lines and tissue lineages from the early mouse embryo. Proc Natl Acad Sci U S A 107(24):10783–10790. doi:10.1073/pnas.0914507107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu H, Lin Q, Wang Y, He Y, Fu S, Jiang H, Yu Y, Sun S, Chen Y, Shou J, Li H (2013) Inhibition of H3K9 methyltransferases G9a/GLP prevents ototoxicity and ongoing hair cell death. Cell Death Dis 4:e506. doi:10.1038/cddis.2013.28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Metzger E, Wissmann M, Yin N, Muller JM, Schneider R, Peters AH, Gunther T, Buettner R, Schule R (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437(7057):436–439

    CAS  PubMed  Google Scholar 

  13. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119(7):941–953. doi:10.1016/j.cell.2004.12.012

    Article  CAS  PubMed  Google Scholar 

  14. Mimasu S, Umezawa N, Sato S, Higuchi T, Umehara T, Yokoyama S (2010) Structurally designed trans-2-phenylcyclopropylamine derivatives potently inhibit histone demethylase LSD1/KDM1. Biochemistry 49(30):6494–6503. doi:10.1021/bi100299r

    Article  CAS  PubMed  Google Scholar 

  15. Gooden DM, Schmidt DM, Pollock JA, Kabadi AM, McCafferty DG (2008) Facile synthesis of substituted trans-2-arylcyclopropylamine inhibitors of the human histone demethylase LSD1 and monoamine oxidases A and B. Bioorg Med Chem Lett 18(10):3047–3051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Binda C, Valente S, Romanenghi M, Pilotto S, Cirilli R, Karytinos A, Ciossani G, Botrugno OA, Forneris F, Tardugno M, Edmondson DE, Minucci S, Mattevi A, Mai A (2010) Biochemical, structural, and biological evaluation of tranylcypromine derivatives as inhibitors of histone demethylases LSD1 and LSD2. J Am Chem Soc 132(19):6827–6833. doi:10.1021/ja101557k

    Article  CAS  PubMed  Google Scholar 

  17. Pekowska A, Benoukraf T, Ferrier P, Spicuglia S (2010) A unique H3K4me2 profile marks tissue-specific gene regulation. Genome Res 20(11):1493–1502. doi:10.1101/gr.109389.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang J, Parvin J, Huang K (2012) Redistribution of H3K4me2 on neural tissue specific genes during mouse brain development. BMC Genomics 13(Suppl 8):S5. doi:10.1186/1471-2164-13-S8-S5

    PubMed  PubMed Central  Google Scholar 

  19. Popova EY, Xu X, DeWan AT, Salzberg AC, Berg A, Hoh J, Zhang SS, Barnstable CJ (2012) Stage and gene specific signatures defined by histones H3K4me2 and H3K27me3 accompany mammalian retina maturation in vivo. PLoS One 7(10):e46867. doi:10.1371/journal.pone.0046867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Forge A, Richardson G (1993) Freeze fracture analysis of apical membranes in cochlear cultures: differences between basal and apical-coil outer hair cells and effects of neomycin. J Neurocytol 22(10):854–867

    Article  CAS  PubMed  Google Scholar 

  21. Richardson GP, Russell IJ (1991) Cochlear cultures as a model system for studying aminoglycoside induced ototoxicity. Hear Res 53(2):293–311

    Article  CAS  PubMed  Google Scholar 

  22. Gale JE, Marcotti W, Kennedy HJ, Kros CJ, Richardson GP (2001) FM1-43 dye behaves as a permeant blocker of the hair-cell mechanotransducer channel. J Neurosci 21(18):7013–7025

    CAS  PubMed  Google Scholar 

  23. Jia S, Yang S, Guo W, He DZ (2009) Fate of mammalian cochlear hair cells and stereocilia after loss of the stereocilia. J Neurosci 29(48):15277–15285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7(8):847–854. doi:10.1038/nn1276

    Article  CAS  PubMed  Google Scholar 

  25. Suva ML, Riggi N, Bernstein BE (2013) Epigenetic reprogramming in cancer. Science 339(6127):1567–1570. doi:10.1126/science.1230184

    Article  CAS  PubMed  Google Scholar 

  26. Roidl D, Hacker C (2014) Histone methylation during neural development. Cell Tissue Res 356(3):539–552. doi:10.1007/s00441-014-1842-8

    Article  CAS  PubMed  Google Scholar 

  27. Papait R, Cattaneo P, Kunderfranco P, Greco C, Carullo P, Guffanti A, Vigano V, Stirparo GG, Latronico MV, Hasenfuss G, Chen J, Condorelli G (2013) Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy. Proc Natl Acad Sci U S A 110(50):20164–20169. doi:10.1073/pnas.1315155110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Falk M, Lukasova E, Stefancikova L, Baranova E, Falkova I, Jezkova L, Davidkova M, Bacikova A, Vachelova J, Michaelidesova A, Kozubek S (2014) Heterochromatinization associated with cell differentiation as a model to study DNA double strand break induction and repair in the context of higher-order chromatin structure. Applied Radiat Isot 83 Pt B:177–185. doi:10.1016/j.apradiso.2013.01.029

    Article  Google Scholar 

  29. Gospodinov A, Herceg Z (2013) Chromatin structure in double strand break repair. DNA repair 12(10):800–810. doi:10.1016/j.dnarep.2013.07.006

    Article  CAS  PubMed  Google Scholar 

  30. Maze I, Noh KM, Allis CD (2013) Histone regulation in the CNS: basic principles of epigenetic plasticity. Neuropsychopharmacoly 38(1):3–22. doi:10.1038/npp.2012.124

    Article  CAS  Google Scholar 

  31. Gupta S, Kim SY, Artis S, Molfese DL, Schumacher A, Sweatt JD, Paylor RE, Lubin FD (2010) Histone methylation regulates memory formation. J Neurosci 30(10):3589–3599. doi:10.1523/JNEUROSCI.3732-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kuzumaki N, Ikegami D, Tamura R, Hareyama N, Imai S, Narita M, Torigoe K, Niikura K, Takeshima H, Ando T, Igarashi K, Kanno J, Ushijima T, Suzuki T (2011) Hippocampal epigenetic modification at the brain-derived neurotrophic factor gene induced by an enriched environment. Hippocampus 21(2):127–132. doi:10.1002/hipo.20775

    Article  CAS  PubMed  Google Scholar 

  33. Huang HS, Matevossian A, Whittle C, Kim SY, Schumacher A, Baker SP, Akbarian S (2007) Prefrontal dysfunction in schizophrenia involves mixed-lineage leukemia 1-regulated histone methylation at GABAergic gene promoters. J Neurosci 27(42):11254–11262

    Article  CAS  PubMed  Google Scholar 

  34. Orford K, Kharchenko P, Lai W, Dao MC, Worhunsky DJ, Ferro A, Janzen V, Park PJ, Scadden DT (2008) Differential H3K4 methylation identifies developmentally poised hematopoietic genes. Dev Cell 14(5):798–809. doi:10.1016/j.devcel.2008.04.002

    Article  CAS  PubMed  Google Scholar 

  35. Kim T, Buratowski S (2009) Dimethylation of H3K4 by Set1 recruits the Set3 histone deacetylase complex to 5′ transcribed regions. Cell 137(2):259–272. doi:10.1016/j.cell.2009.02.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Faucher D, Wellinger RJ (2010) Methylated H3K4, a transcription-associated histone modification, is involved in the DNA damage response pathway. PLoS Genet 6(8). doi:10.1371/journal.pgen.1001082

  37. Tyagi S, Herr W (2009) E2F1 mediates DNA damage and apoptosis through HCF-1 and the MLL family of histone methyltransferases. EMBO J 28(20):3185–3195. doi:10.1038/emboj.2009.258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bergmann JH, Rodriguez MG, Martins NM, Kimura H, Kelly DA, Masumoto H, Larionov V, Jansen LE, Earnshaw WC (2011) Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. The EMBO journal 30(2):328–340. doi:10.1038/emboj.2010.329

    Article  CAS  PubMed  Google Scholar 

  39. Nightingale KP, Gendreizig S, White DA, Bradbury C, Hollfelder F, Turner BM (2007) Cross-talk between histone modifications in response to histone deacetylase inhibitors: MLL4 links histone H3 acetylation and histone H3K4 methylation. J Biol Chem 282(7):4408–4416. doi:10.1074/jbc.M606773200

    Article  CAS  PubMed  Google Scholar 

  40. Jiang H, Sha SH, Forge A, Schacht J (2006) Caspase-independent pathways of hair cell death induced by kanamycin in vivo. Cell Death Differ 13(1):20–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Matsui JI, Haque A, Huss D, Messana EP, Alosi JA, Roberson DW, Cotanche DA, Dickman JD, Warchol ME (2003) Caspase inhibitors promote vestibular hair cell survival and function after aminoglycoside treatment in vivo. J Neurosci 23(14):6111–6122

    CAS  PubMed  Google Scholar 

  42. Cunningham LL, Cheng AG, Rubel EW (2002) Caspase activation in hair cells of the mouse utricle exposed to neomycin. J Neurosci 22(19):8532–8540

    CAS  PubMed  Google Scholar 

  43. Taylor RR, Nevill G, Forge A (2008) Rapid hair cell loss: a mouse model for cochlear lesions. J Assoc Res Otolaryngol 9(1):44–64. doi:10.1007/s10162-007-0105-8

    Article  PubMed  Google Scholar 

  44. Selimoglu E (2007) Aminoglycoside-induced ototoxicity. Curr Pharm Des 13(1):119–126

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Min Yu and Shaoyang Sun for their technical assistance and Yalin Huang for help with the confocal microscope. This work was supported by grants from the Major State Basic Research Development Program of China (973 Program) (2011CB504506, 2010CB945503) and the National Natural Science Foundation of China (Nos. 81070793, 81230019, 81300825), the Program for Changjiang Scholars and Innovative Research Team in University (IRT1010), the Specialized Research Fund for the Doctor Program of Higher Education (20120071110077), the Program of Outstanding Shanghai Academic Leader (11XD1401300), the Program of Leading Medical Personnel in Shanghai, the Fundamental Research Funds for the Central Universities (2242014R30022, NO2013WSN085), and the China Postdoctoral Science Foundation Funded Project (No. 2014M551328)

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huawei Li.

Additional information

Yingzi He, Huiqian Yu, and Chengfu Cai contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 241 kb)

ESM 2

(DOC 808 kb)

ESM 3

(DOC 1841 kb)

ESM 4

(DOC 3415 kb)

ESM 5

(DOC 9409 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Yu, H., Cai, C. et al. Inhibition of H3K4me2 Demethylation Protects Auditory Hair Cells from Neomycin-Induced Apoptosis. Mol Neurobiol 52, 196–205 (2015). https://doi.org/10.1007/s12035-014-8841-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8841-3

Keywords

Navigation