Skip to main content
Log in

α-Synuclein Misfolding Versus Aggregation Relevance to Parkinson’s Disease: Critical Assessment and Modeling

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

α-Synuclein, an abundant and conserved presynaptic brain protein, is implicated as a critical factor in Parkinson’s disease (PD). The aggregation of α-synuclein is believed to be a critical event in the disease process. α-Synuclein is characterized by a remarkable conformational plasticity, adopting different conformations depending on the environment. Therefore, it is classified as an “intrinsically disordered protein.” Recently, a debate has challenged the view on the intrinsically disordered behavior of α-synuclein in the cell. It has been proposed that α-synuclein is a stable tetramer with a low propensity for aggregation; however, its destabilization leads to protein misfolding and its aggregation kinetics. In our critical analysis, we discussed about major issues: (i) why α-synuclein conformational behavior does not fit into the normal secondary structural characteristics of proteins, (ii) potential amino acids involved in the complexity of misfolding in α-synuclein that leads to aggregation, and (iii) the role of metals in misfolding and aggregation. To evaluate the above critical issues, we developed bioinformatics models related to secondary and tertiary conformations, Ramachandran plot, free energy change, intrinsic disordered prediction, solvent accessibility, and FoldIndex pattern. To the best of our knowledge, this is a novel critical assessment to understand the misfolding biology of synuclein and its relevance to Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    Article  CAS  PubMed  Google Scholar 

  2. Wakabayashi K, Matsumoto K, Takayama K, Yoshimoto M, Takahashi H (1997) NACP, a presynaptic protein, immunoreactivity in Lewy bodies in Parkinson’s disease. Neurosci Lett 239:45–48

    Article  CAS  PubMed  Google Scholar 

  3. Spillantini MG, Schimdt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) α-Synuclein in Lewy bodies. Nature 388:839–840

    Article  CAS  PubMed  Google Scholar 

  4. Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18:106–108

    Article  CAS  PubMed  Google Scholar 

  5. Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atares B, Llorens V et al (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia, Ann. Neurol 55:164–173

    CAS  Google Scholar 

  6. Conway KA, Harper JD, Lansbury PT (1998) Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med 4:1318–20. doi:10.1038/3311

    Article  CAS  PubMed  Google Scholar 

  7. Puschmann A, Wszolek ZK, Farrer M, Gustafson L, Widner H, Nilsson C (2009) Alpha-synuclein multiplications with parkinsonism, dementia or progressive myoclonus? Parkinsonism Relat Disord 15(5):390–2

    Article  PubMed  Google Scholar 

  8. Biskup S, Gerlach M, Kupsch A, Reichmann H, Riederer P, Vieregge P, Wüllner U, Gasser T (2008) Genes associated with Parkinson syndrome. J Neurol 255(Suppl 5):8–17

    Article  CAS  PubMed  Google Scholar 

  9. Tsigelny IF, Sharikov Y, Miller MA, Masliah E (2008) Mechanism of alpha-synuclein oligomerization and membrane interaction: theoretical approach to unstructured proteins studies. Nanomedicine 4(4):350–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Uversky VN, Li J, Fink AL (2001) Evidence for a partially folded intermediate in α-synuclein fibril formation. J Biol Chem 276:10737–10744

    Article  CAS  PubMed  Google Scholar 

  11. Uversky VN, Li J, Fink AL (2001) Metal-triggered structural transformation, aggregation and fibrillation of human α-synuclein, a possible molecular link between Parkinson’s disease and heavy metal exposure. J Biol Chem 276:44284–44296

    Article  CAS  PubMed  Google Scholar 

  12. Buchman VL, Adu J, Pinõn LG, Ninkina NN, Davies AM (1998) Persyn, a member of the synuclein family, influences neurofilament network integrity. Nat Neurosci 1(2):101–3

    Article  CAS  PubMed  Google Scholar 

  13. Heise H, Celej MS, Becker S, Riedel D, Pelah A, Kumar A, Jovin TM, Baldus M (2008) Solid-state NMR reveals structural differences between fibrils of wild-type and disease-related A53T mutant alpha-synuclein. J Mol Biol 380(3):444–50

    Article  CAS  PubMed  Google Scholar 

  14. Bertoncini CW, Fernandez CO, Griesinger C, Jovin TM, Zweckstetter M (2005) Familial mutants of alpha-synuclein with increased neurotoxicity have a destabilized conformation. J Biol Chem 280(35):30649–52

    Article  CAS  PubMed  Google Scholar 

  15. Vilar M, Chou HT, Lührs T, Maji SK, Riek-Loher D, Verel R, Manning G, Stahlberg H, Riek R (2008) The fold of alpha-synuclein fibrils. Proc Natl Acad Sci U S A 105(25):8637–42

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Wu KP, Kim S, Fela DA, Baum J (2008) Characterization of conformational and dynamic properties of natively unfolded human and mouse alpha-synuclein ensembles by NMR: implication for aggregation. J Mol Biol 378(5):1104–15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Gath J, Bousset L, Habenstein B et al (2013) Yet another polymorph of α-synuclein: solid-state sequential assignments. Biomol NMR Assign. doi:10.1007/s12104-013-9526-y

    PubMed  Google Scholar 

  18. Schwalbe M, Ozenne V, Bibow S et al (2014) Predictive atomic resolution descriptions of intrinsically disordered hTau40 and α-synuclein in solution from NMR and small angle scattering. Structure 22:238–49. doi:10.1016/j.str.2013.10.020

    Article  CAS  PubMed  Google Scholar 

  19. Jiang P, Ko LW, Jansen KR, Golde TE, Yen SH (2008) Using leucine zipper to facilitate alpha-synuclein assembly. FASEB J 22(9):3165–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Varkey J, Isas JM, Mizuno N et al (2010) Membrane curvature induction and tubulation are common features of synucleins and apolipoproteins. J Biol Chem 285:32486–93. doi:10.1074/jbc.M110.139576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Wu K-P, Kim S, Fela DA, Baum J (2008) Characterization of conformational and dynamic properties of natively unfolded human and mouse alpha-synuclein ensembles by NMR: implication for aggregation. J Mol Biol 378:1104–15. doi:10.1016/j.jmb.2008.03.017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Recchia A, Debetto P, Negro A et al (2004) Alpha-synuclein and Parkinson’s disease. FASEB J 18:617–26. doi:10.1096/fj.03-0338rev

    Article  CAS  PubMed  Google Scholar 

  23. Lemkau LR, Comellas G, Lee SW et al (2013) Site-specific perturbations of alpha-synuclein fibril structure by the Parkinson’s disease associated mutations A53T and E46K. PLoS One 8:e49750. doi:10.1371/journal.pone.0049750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Petersen B, Petersen TN, Andersen P et al (2009) A generic method for assignment of reliability scores applied to solvent accessibility predictions. BMC Struct Biol 9:51. doi:10.1186/1472-6807-9-5

    Article  PubMed Central  PubMed  Google Scholar 

  25. Miake H, Mizusawa H, Iwatsubo T, Hasegawa M (2002) Biochemical characterization of the core structure of alpha-synuclein filaments. J Biol Chem 277:19213–9. doi:10.1074/jbc.M110551200

    Article  CAS  PubMed  Google Scholar 

  26. Deng X, Eickholt J, Cheng J (2012) A comprehensive overview of computational protein disorder prediction methods. Mol Biosyst 8:114–21. doi:10.1039/c1mb05207a

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. McGuffin LJ (2008) Intrinsic disorder prediction from the analysis of multiple protein fold recognition models. Bioinformatics 24:1798–804. doi:10.1093/bioinformatics/btn326

    Article  CAS  PubMed  Google Scholar 

  28. Prilusky J, Felder CE, Zeev-Ben-Mordehai T et al (2005) FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21:3435–8. doi:10.1093/bioinformatics/bti537

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40. doi:10.1186/1471-2105-9-40

    Article  PubMed Central  PubMed  Google Scholar 

  30. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–38. doi:10.1038/nprot.2010.5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Buchan DW a, Minneci F, Nugent TCO, et al. (2013) Scalable web services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Res 41:W349–57. doi: 10.1093/nar/gkt381

  32. Hegde ML, Rao KSJ (2007) DNA induces folding in alpha-synuclein: understanding the mechanism using chaperone property of osmolytes. Arch Biochem Biophys 464:57–69. doi:10.1016/j.abb.2007.03.042

    Article  CAS  PubMed  Google Scholar 

  33. Qin Z, Hu D, Han S et al (2007) Role of different regions of alpha-synuclein in the assembly of fibrils. Biochemistry 46:13322–30. doi:10.1021/bi7014053

    Article  CAS  PubMed  Google Scholar 

  34. Murray IVJ, Giasson BI, Quinn SM et al (2003) Role of alpha-synuclein carboxy-terminus on fibril formation in vitro. Biochemistry 42:8530–40. doi:10.1021/bi027363r

    Article  CAS  PubMed  Google Scholar 

  35. Laskowski RA, Rullmannn JA, MacArthur MW et al (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–86

    Article  CAS  PubMed  Google Scholar 

  36. Schymkowitz J, Borg J, Stricher F et al (2005) The FoldX web server: an online force field. Nucleic Acids Res 33:W382–8. doi:10.1093/nar/gki387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Van Durme J, Delgado J, Stricher F et al (2011) A graphical interface for the FoldX forcefield. Bioinformatics 27:1711–2. doi:10.1093/bioinformatics/btr254

    Article  PubMed  Google Scholar 

  38. Guerois R, Nielsen JE, Serrano L (2002) Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 320:369–87. doi:10.1016/S0022-2836(02)00442-4

    Article  CAS  PubMed  Google Scholar 

  39. Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37:215–46. doi:10.1146/annurev.biophys.37.032807.125924

    Article  CAS  PubMed  Google Scholar 

  40. Smith DP, Tew DJ, Hill AF et al (2008) Formation of a high affinity lipid-binding intermediate during the early aggregation phase of alpha-synuclein. Biochemistry 47:1425–34. doi:10.1021/bi701522m

    Article  CAS  PubMed  Google Scholar 

  41. Conway KA, Lee S, Rochet J, et al. (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both α-synuclein mutations linked to early-onset Parkinson’s disease : implications for pathogenesis and therapy. 97:571–576.

  42. Uversky VN (2002) Natively unfolded proteins: a point where biology waits where biology waits for physics. Protein Sci 11:739–756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Lucking CB, Brice A (2000) α-Synuclein and Parkinson’s disease. Cell Mol Life Sci 57:1894–1908

    Article  CAS  PubMed  Google Scholar 

  44. Jensen PH, Islam K, Kenney J, Nielsen MS, Power J, Gai WP (2000) Microtubule-associated protein 1B is a component of cortical Lewy bodies and binds alpha-synuclein filaments. J Biol Chem 275:21500–21507

    Article  CAS  PubMed  Google Scholar 

  45. Clayton DF, George JM (1998) The synucleins: a family of proteins involved in synaptic functions, plasticity, neurodegeneration and disease. Trends Neurosci 21:249–254

    Article  CAS  PubMed  Google Scholar 

  46. Davidson WS, Jonas A, Clayton DF, George JM (1998) Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 273:9443–9449

    Article  CAS  PubMed  Google Scholar 

  47. McLean PJ, Kawamata H, Ribich S, Hyman BT (2000) Membrane association and protein conformation of alpha-synuclein in intact neurons Effect of Parkinson’s disease-linked mutations. J Biol Chem 275:8812–8816

    Article  CAS  PubMed  Google Scholar 

  48. George JM, Jin H, Woods WS, Clayton DF (1995) Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15:361–372

    Article  CAS  PubMed  Google Scholar 

  49. Kurz A, May C, Schmidt O et al (2012) A53T-alpha-synuclein-overexpression in the mouse nigrostriatal pathway leads to early increase of 14-3-3 epsilon and late increase of GFAP. J Neural Transm 119:297–312. doi:10.1007/s00702-011-0717-3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Jensen PH, Hager H, Nielsen S et al (1999) Protein chemistry and structure: α-synuclein binds to tau and stimulates the protein kinase A-catalyzed tau phosphorylation of serine residues 262 and 356. J Biol Chem 274:25481–9

    Article  CAS  PubMed  Google Scholar 

  51. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 83(13):4913–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Bayer TA, Jäkälä P, Hartmann T, Egensperger R, Buslei R, Falkai P, Beyreuther K (1999) Neural expression profile of alpha-synuclein in developing human cortex. Neuroreport 10(13):2799–803

    Article  CAS  PubMed  Google Scholar 

  53. Stefanis L, Kholodilov N, Rideout HJ, Burke RE, Greene LA (2001) Synuclein-1 is selectively up-regulated in response to nerve growth factor treatment in PC12 cells. J Neurochem 76(4):1165–76

    Article  CAS  PubMed  Google Scholar 

  54. Jenco JM, Rawlingson A, Daniels B, Morris AJ (1998) Regulation of phospholipase D2: selective inhibition of mammalian phospholipase D isoenzymes by alpha- and beta-synucleins. Biochemistry 37(14):4901–9

    Article  CAS  PubMed  Google Scholar 

  55. Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho WH, Castillo PE, Shinsky N, Verdugo JM, Armanini M, Ryan A, Hynes M, Phillips H, Sulzer D, Rosenthal A (2000) Mice lacking alpha synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25:239–252

    Article  CAS  PubMed  Google Scholar 

  56. Cole NB, Murphy DD, Grider T, Rueter S, Brasaemle D, Nussbaum RL (2002) Lipid droplet binding and oligomerization properties of the Parkinson’s disease protein alpha-synuclein. J Biol Chem 277:6344–6352

    Article  CAS  PubMed  Google Scholar 

  57. Yuan J, Zhao Y (2013) Biochemical and biophysical research communications evolutionary aspects of the synuclein super-family and sub-families based on large-scale phylogenetic and group-discrimination analysis. Biochem Biophys Res Commun 441:308–317. doi:10.1016/j.bbrc.2013.09.132

    Article  CAS  PubMed  Google Scholar 

  58. Dudzik CG, Walter ED, Millhauser GL (2011) Coordination features and affinity of the Cu2+ site in the α-synuclein protein of Parkinson’s disease. Biochemistry 50:1771–7. doi:10.1021/bi101912q

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Levitan K, Chereau D, Cohen SIA, et al. (2012) The aggregation rate of α-synuclein. 411:329–333. doi: 10.1016/j.jmb.2011.05.046

  60. Sato H, Kato T, Arawaka S (2013) The role of Ser129 phosphorylation of α-synuclein in neurodegeneration of Parkinson’s disease: a review of in vivo models. Rev Neurosci 24:115–23. doi:10.1515/revneuro-2012-0071

    CAS  PubMed  Google Scholar 

  61. Acharya S, Safaie BM, Wongkongkathep P, et al. (2014) Molecular basis for preventing α-synuclein aggregation by a molecular tweezer. J Biol Chem M113.524520–. doi: 10.1074/jbc.M113.524520

  62. Gould N, Mor DE, Lightfoot R et al (2014) Evidence of native α-synuclein conformers in the human brain. J Biol Chem 289:7929–34. doi:10.1074/jbc.C113.538249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Jakes R, Spillantini MG, Goedert M (1994) Identification of two distinct synucleins from human brain. FEBS Lett 345:27–32

    Article  CAS  PubMed  Google Scholar 

  64. Masliah E, Rockenstein E, Veinbergs I et al (2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287:1265–9

    Article  CAS  PubMed  Google Scholar 

  65. Gadad BS, Britton GB, Rao KS (2011) Targeting oligomers in neurodegenerative disorders: lessons from α-synuclein, tau, and amyloid-β peptide. J Alzheimers Dis 24:223–32

    CAS  PubMed  Google Scholar 

  66. Lorenzen N, Nielsen SB, Buell AK et al (2014) The role of stable α-synuclein oligomers in the molecular events underlying amyloid formation. J Am Chem Soc 136:3859–68. doi:10.1021/ja411577t

    Article  CAS  PubMed  Google Scholar 

  67. Kayed R, Head E, Thompson JL et al (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–9. doi:10.1126/science.1079469

    Article  CAS  PubMed  Google Scholar 

  68. Lindersson E, Beedholm R, Højrup P et al (2004) Proteasomal inhibition by alpha-synuclein filaments and oligomers. J Biol Chem 279:12924–34. doi:10.1074/jbc.M306390200

    Article  CAS  PubMed  Google Scholar 

  69. Conway KA, Harper JD, Lansbury PT (2000) Fibrils formed in vitro from r-synuclein and two mutant forms linked to Parkinson’s disease are typical amyloid. Biochemistry 10:2552–63

    Article  Google Scholar 

  70. Ding TT, Lee S-J, Rochet J-C, Lansbury PT (2002) Annular alpha-synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain-derived membranes. Biochemistry 41:10209–17

    Article  CAS  PubMed  Google Scholar 

  71. Kahle PJ, Neumann M, Ozmen L et al (2001) Selective insolubility of alpha-synuclein in human Lewy body diseases is recapitulated in a transgenic mouse model. Am J Pathol 159:2215–25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Pountney DL, Lowe R, Quilty M et al (2004) Annular alpha-synuclein species from purified multiple system atrophy inclusions. J Neurochem 90:502–12. doi:10.1111/j.1471-4159.2004.02533

    Article  CAS  PubMed  Google Scholar 

  73. Wood SJ, Wypych J, Steavenson S et al (1999) Alpha-synuclein fibrillogenesis is nucleation-dependent Implications for the pathogenesis of Parkinson’s disease. J Biol Chem 274:19509–12

    Article  CAS  PubMed  Google Scholar 

  74. Arima K, Uéda K, Sunohara N et al (1998) NACP/alpha-synuclein immunoreactivity in fibrillary components of neuronal and oligodendroglial cytoplasmic inclusions in the pontine nuclei in multiple system atrophy. Acta Neuropathol 96:439–44

    Article  CAS  PubMed  Google Scholar 

  75. Gai WP, Power JH, Blumbergs PC et al (1999) Alpha-synuclein immunoisolation of glial inclusions from multiple system atrophy brain tissue reveals multiprotein components. J Neurochem 73:2093–100

    CAS  PubMed  Google Scholar 

  76. Jensen PH, Islam K, Kenney J et al (2000) Microtubule-associated protein 1B is a component of cortical Lewy bodies and binds alpha-synuclein filaments. J Biol Chem 275:21500–7. doi:10.1074/jbc.M000099200

    Article  CAS  PubMed  Google Scholar 

  77. Grazia Spillantini M, Anthony Crowther R, Jakes R et al (1998) Filamentous α-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett 251:205–208. doi:10.1016/S0304-3940(98)00504-7

    Article  CAS  Google Scholar 

  78. Bharathi RR, Rao KS (2006) Role of metal in neuronal apoptosis: challenges associated with neurodegeneration. Curr Alz Res 2:311–326

    Google Scholar 

  79. Rao KS, Hegde ML, Anitha S, Musicco M, Zucca FA, Turro NJ, Zecca L (2006) Amyloid beta and neuromelanin—toxic or protective molecules? The cellular context makes the difference. Prog Neurobiol 78(6):364–73

    Article  CAS  PubMed  Google Scholar 

  80. Hegde ML, Shanmugavelu P, Vengamma B, Sathyanarayana Rao TS, Menon RB, Rao RV, Rao KS (2004) Serum trace elemental levels and the complexity of inter-elemental relationships in patients with Parkinson’s disease. J Trace Elements Med Biol 18:163–171

    Article  CAS  Google Scholar 

  81. Sanjay Pande MB, Nagabhushan P, Hegde ML, Sathyanarayana Rao TS, Rao KS (2005) An algorithmic approach to understand trace elemental homeostasis in serum samples of Parkinson disease. Comput Biol Med 35:475–493

    Article  Google Scholar 

  82. Singh N, Haldar S, Tripathi AK et al (2014) Iron in neurodegenerative disorders of protein misfolding: a case of prion disorders and Parkinson’s disease. Antioxid Redox Signal. doi:10.1089/ars.2014.5874

    PubMed Central  Google Scholar 

  83. Tamás M, Sharma S, Ibstedt S et al (2014) Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biogeosciences 4:252–267. doi:10.3390/biom4010252

    Google Scholar 

  84. Golts N, Snyder H, Frasier M, Theisler C, Choi P, Wolozin B (2002) Magnesium inhibits spontaneous and iron-induced aggregation of alpha-synuclein. J Biol Chem 277:16116–16123

    Article  CAS  PubMed  Google Scholar 

  85. Bharathi PN, Rao KS (2008) Mathematical approach to understand the kinetics of alpha-synuclein aggregation: relevance to Parkinson’s disease. Comp Biol Med 38:1084–93

    Article  CAS  Google Scholar 

  86. Bharathi RKS (2008) Molecular understanding of copper and iron interactions with alpha-synuclein: fluorescence studies. J Mol Neurosci 35:273–281

    Article  CAS  PubMed  Google Scholar 

  87. Bharathi ISS, Rao KS (2007) Copper- and iron-induced differential fibril formation in alpha-synuclein: TEM study. Neurosci Lett 424(2):78–82

    Article  CAS  PubMed  Google Scholar 

  88. Bharathi RKS (2007) Thermodynamics imprinting reveals differential binding of metals to alpha-synuclein: relevance to Parkinson’s disease. Biochem Biophys Res Commun 59(1):115–20

    Article  Google Scholar 

  89. Sung YH, Rospigliosi C, Eliezer D (2006) NMR mapping of copper binding sites in alpha-synuclein. Biochim Biophys Acta 1764:5–12

    Article  CAS  PubMed  Google Scholar 

  90. Binolfi A, Rasia RM, Bertoncini CW, Ceolin M, Zweckstetter M, Griesinger C, Jovin TM, Fernández CO (2006) Interaction of alpha-synuclein with divalent metal ions reveals key differences: a link between structure, binding specificity and fibrillation enhancement. J Am Chem Soc 128(30):9893–901

    Article  CAS  PubMed  Google Scholar 

  91. Drew SC, Leong SL, Pham CL, Tew DJ, Masters CL, Miles LA, Cappai R, Barnham KJ (2008) Cu2+ binding modes of recombinant alpha-synuclein—insights from EPR spectroscopy. J Am Chem Soc 130(24):7766–73

    Article  PubMed  Google Scholar 

  92. Lee JC, Gray HB, Winkler JR (2008) Copper(II) binding to alpha-synuclein, the Parkinson’s protein. J Am Chem Soc 130(22):6898–9

    Article  PubMed Central  PubMed  Google Scholar 

  93. Kostka M, Högen T, Danzer KM, Levin J, Habeck M, Wirth A, Wagner R, Glabe CG, Finger S, Heinzelmann U, Garidel P, Duan W, Ross CA, Kretzschmar H, Giese A (2008) Single particle characterization of iron-induced pore-forming alpha-synuclein oligomers. J Biol Chem 283(16):10992–1003

    Article  CAS  PubMed  Google Scholar 

  94. Liu LL, Franz KJ (2007) Phosphorylation-dependent metal binding by alpha-synuclein peptide fragments. J Biol Inorg Chem 12:232–237

    Google Scholar 

Download references

Acknowledgments

The authors thank Melo Brain Grant and Melo Bioinformatics facility for support. Rao KS is thankful to the National Science Investigation (SNI) of SENACYT, Republic of Panama for partial financial support. Velmarini Vasquez is supported by a doctoral scholarship granted by the Institute for Training and Development of Human Resources of Panama (IFARHU) and the National Secretariat for Science, Technology, and Innovation of Panama (SENACYT).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bharathi S Gadad or Rao KS.

Additional information

Ruben Berrocal and Velmarini Vasquez are equally first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berrocal, R., Vasquez, V., KRS, S.R. et al. α-Synuclein Misfolding Versus Aggregation Relevance to Parkinson’s Disease: Critical Assessment and Modeling. Mol Neurobiol 51, 1417–1431 (2015). https://doi.org/10.1007/s12035-014-8818-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8818-2

Keywords

Navigation