Skip to main content

Advertisement

Log in

Availability of Pre- and Pro-regions of Transgenic GDNF Affects the Ability to Induce Axonal Sprout Growth

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Plasmids containing four GFP-tagged isoforms of the human GDNF gene, with both pre- and pro-regions (prepro- GDNF), with the pre- (pre-GDNF) or the pro-region (pro-GDNF) alone, and without the pre- and pro-regions (mGDNF), were used to transfect HEK293 cells (human embryonic kidney cell line). The effect of the transgenic products on the growth of processes was studied in the spinal ganglia of 14-day rat embryos. Media conditioned by the transgenic cells were used to culture explants and dissociated cells of embryonic dorsal root ganglia attached to the bottom of the plate. Medium conditioned by gfp-transgenic HEK293 cells was used as the control. Spinal ganglia explants and dissociated cells cultured in a medium supplemented with recombinant GDNF (recGDNF) as well as in conditioned media containing the pre-GDNF and mGDNF products demonstrated active growth of processes immunopositive for neuronal marker beta-3-tubulin as early as on culture day 4. The ganglia and cells cultured in control medium and media conditioned by cells transgenic for pro-GDNF had no or very few processes even after 10 days of culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Thoenen H, Edgar D (1985) Neurotrophic factors. Science 229:238–242. doi:10.1126/science.2409599

    Article  CAS  PubMed  Google Scholar 

  2. Varon S, Manthorpe M, Adler R (1979) Cholinergic neuronotrophic factors: I. Survival, neurite outgrowth and choline acetyltransferase activity in monolayer cultures from chick embryo ciliary ganglia. Brain Res 173:29–45. doi:10.1016/0006-8993(79)91093-X

    Article  CAS  PubMed  Google Scholar 

  3. Aoi M, Date I, Tomita S, Ohmoto T (2000) GDNF induces recovery of the nigrostriatal dopaminergic system in the rat brain following intracerebroventricular or intraparenchymal administration. Acta Neurochir 142:805–810

    Article  CAS  PubMed  Google Scholar 

  4. Date I, Aoi M, Tomita S, Collins F, Ohmoto T (1998) GDNF administration induces recovery of the nigrostriatal dopaminergic system both in young and aged parkinsonian mice. Neuroreport 9:2365–2369

    Article  CAS  PubMed  Google Scholar 

  5. Connor B (2001) Adenoviral vector-mediated delivery of glial cell line-derived neurotrophic factor provides neuroprotection in the aged parkinsonian rat. Clin Exp Pharmacol Physiol 28:896–900. doi:10.1046/j.1440-1681.2001.03544.x

    Article  CAS  PubMed  Google Scholar 

  6. Jollivet C, Aubert-Pouessel A, Clavreul A, Venier-Julienne MC, Remy S, Montero-Menei CN, Benoit JP, Menei P (2004) Striatal implantation of GDNF releasing biodegradable microspheres promotes recovery of motor function in a partial model of Parkinson's disease. Biomaterials 25(5):933–942. doi:10.1016/S0142-9612(03)00601-X

    Article  CAS  PubMed  Google Scholar 

  7. Akerud P, Canals JM, Snyder EY, Arenas E (2001) Neuroprotection through delivery of glial cell line-derived neurotrophic factor by neural stem cells in a mouse model of Parkinson's disease. J Neurosci 21:8108–8118

    CAS  PubMed  Google Scholar 

  8. Hoke A, Cheng C, Zochodne DW (2000) Expression of glial cell line-derived neurotrophic factor family of growth factors in peripheral nerve injury in rats. Neuroreport 11:1651–1654

    Article  CAS  PubMed  Google Scholar 

  9. Cheng H, Wu JP, Tzeng SF (2002) Neuroprotection of glial cell line-derived neurotrophic factor in damaged spinal cords following contusive injury. J Neurosci Res 69:397–405. doi:10.1002/jnr.10303

    Article  CAS  PubMed  Google Scholar 

  10. Iannotti C, Li H, Yan P, Lu X, Wirthlin L, Xu XM (2003) Glial cell line-derived neurotrophic factor-enriched bridging transplants promote propriospinal axonal regeneration and enhance myelination after spinal cord injury. Exp Neurol 183:379–393. doi:10.1016/S0014-4886(03)00188-2

    Article  CAS  PubMed  Google Scholar 

  11. Engele J, Schubert D, Bohn MC (1991) Conditioned media derived from glial cell lines promote survival and differentiation of dopaminergic neurons in vitro: role of mesencephalic glia. J Neurosci Res 30:359–371

    Article  CAS  PubMed  Google Scholar 

  12. Airavaara M, Pletnikova O, Doyle ME, Zhang YE, Troncoso JC, Liu QR (2011) Identification of novel GDNF isoforms and cis-antisense GDNFOS gene and their regulation in human middle temporal gyrus of Alzheimer disease. J Biol Chem 286:45093–45102. doi:10.1074/jbc.M111.310250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Suter-Crazzolara C, Unsicker K (1994) GDNF is expressed in two forms in many tissues outside the CNS. Neuroreport 5:2486–2488

    Article  CAS  PubMed  Google Scholar 

  14. Trupp M, Ryden M, Jornvall H, Funakoshi H, Timmusk T, Arenas E, Ibanez CF (1995) Peripheral expression and biological activities of GDNF, a new neurotrophic factor for avian and mammalian peripheral neurons. J Cell Biol 130:137–148

    Article  CAS  PubMed  Google Scholar 

  15. Matsushita N, Fujita Y, Tanaka M, Nagatsu T, Kiuchi K (1997) Cloning and structural organization of the gene encoding the mouse glial cell line-derived neurotrophic factor, GDNF. Gene 203:149–157. doi:10.1016/S0378-1119(97)00506-4

    Article  CAS  PubMed  Google Scholar 

  16. Grimm L, Holinski-Feder E, Teodoridis J, Scheffer B, Schindelhauer D, Meitinger T, Ueffing M (1998) Analysis of the human GDNF gene reveals an inducible promoter, three exons, a triplet repeat within the 3′-UTR and alternative splice products. Hum Mol Genet 7:1873–1886. doi:10.1093/hmg/7.12.1873

    Article  CAS  PubMed  Google Scholar 

  17. Thomas K, Davies A (2005) Neurotrophins: a ticket to ride for BDNF. Curr Biol 15:262–264. doi:10.1016/j.cub.2005.03.023

    Article  Google Scholar 

  18. Lonka-Nevalaita L, Lume M, Leppanen S, Jokitalo E, Peranen J, Saarma M (2010) Characterization of the intracellular localization, processing, and secretion of two glial cell line-derived neurotrophic factor splice isoforms. J Neurosci 30:11403–11413. doi:10.1523/JNEUROSCI.5888-09.2010

    Article  CAS  PubMed  Google Scholar 

  19. Lipton JW, Tolod EG, Thompson VB, Pei L, Paumier KL, Terpstra BT, Lynch KA, Collier TJ, Sortwell CE (2008) 3,4-Methylenedioxy-N-methamphetamine (ecstasy) promotes the survival of fetal dopamine neurons in culture. Neuropharmacology 55:851–859. doi:10.1016/j.neuropharm.2008.06.062

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Howard CV, Reed MG (2005) Unbiased stereology: three-dimensional measurement in microscopy. Garland Science/BIOS Scientific, New York

    Google Scholar 

  21. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132. doi:10.1126/science.8493557

    Article  CAS  PubMed  Google Scholar 

  22. Airaksinen MS, Saarma M (2002) The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3:383–394. doi:10.1038/nrn812

    Article  CAS  PubMed  Google Scholar 

  23. Andressoo JO, Saarma M (2008) Signalling mechanisms underlying development and maintenance of dopamine neurons. Curr Opin Neurobiol 18:297–306. doi:10.1016/j.conb.2008.07.005

    Article  CAS  PubMed  Google Scholar 

  24. Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A, Lee EJ, Huang SP, Saarma M, Hoffer BJ, Sariola H, Westphal H (1996) Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382:73–76. doi:10.1038/382073a0

    Article  CAS  PubMed  Google Scholar 

  25. Nickel W (2005) Unconventional secretory routes: direct protein export across the plasma membrane of mammalian cells. Traffic 6:607–614. doi:10.1111/j.1600-0854.2005.00302.x

    Article  CAS  PubMed  Google Scholar 

  26. Regente M, Pinedo M, Elizalde M, de la Canal L (2012) Apoplastic exosome-like vesicles: a new way of protein secretion in plants? Plant Signal Behav 7:544–546. doi:10.4161/psb.19675

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Prudovsky I (2013) Nonclassically secreted regulators of angiogenesis. Angiol Open Access 1(1):1000101. doi:10.4172/2329-9495.1000101

    PubMed Central  PubMed  Google Scholar 

  28. Huang D, Shusta EV (2005) Secretion and surface display of green fluorescent protein using the yeast Saccharomyces cerevisiae. Biotechnol Prog 21:349–357. doi:10.1021/bp0497482

    Article  CAS  PubMed  Google Scholar 

  29. Li J, Xu H, Bentley WE, Rao G (2002) Impediments to secretion of green fluorescent protein and its fusion from Saccharomyces cerevisiae. Biotechnol Prog 18:831–838. doi:10.1021/bp020066t

    Article  CAS  PubMed  Google Scholar 

  30. Tanudji M, Hevi S, Chuck SL (2002) Improperly folded green fluorescent protein is secreted via a non-classical pathway. J Cell Sci 115:3849–3857. doi:10.1242/jcs.00047

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by State Contract no. 8150, Program “Molecular and Cell Biology” and grant Russian Science Foundation (14-15-00942). Experiments were performed using the equipment of the IGB RAS facilities supported by the Ministry of Science and Education of the Russian Federation (grants 16.552.11.7067).

Conflict of Interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina Pavlova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kust, N., Panteleev, D., Mertsalov, I. et al. Availability of Pre- and Pro-regions of Transgenic GDNF Affects the Ability to Induce Axonal Sprout Growth. Mol Neurobiol 51, 1195–1205 (2015). https://doi.org/10.1007/s12035-014-8792-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8792-8

Keywords

Navigation