Skip to main content

Advertisement

Log in

PEGylated rhFGF-2 Conveys Long-term Neuroprotection and Improves Neuronal Function in a Rat Model of Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Fibroblast growth factor 2 (FGF-2) has a neurotrophic effect on dopaminergic neurons in vitro and in vivo, and exhibits beneficial effects in animal models of neurodegenerative disorders such as Parkinson’s disease (PD). The poor stability and short half-life of FGF-2, however, have hampered its clinical use for neurological diseases. In the present study, we modified native recombinant human FGF-2 (rhFGF-2) by covalently attaching polyethylene glycol (PEG) polymers, named PEGylation, to enhance its neuroprotection efficacy in 6-hydroxydopamine (6-OHDA)-induced model of PD. In vitro, PEG-rhFGF-2 performed better biostability in 6-OHDA-induced PC-12 cells than native rhFGF-2. The in vivo data showed that, compared with native rhFGF-2, PEGylated rhFGF-2 was more efficacious in preventing 6-OHDA-induced lesion upon tyrosine hydroxylase-positive neurons in the substantia nigra (SN), improving the apomorphine-induced rotational behavior and the 6-OHDA-induced decline in tissue concentration of dopamine (DA) and its metabolites. Importantly, our data showed that the superior pharmacological activity of PEGylated rhFGF-2 is probably due to its greater permeability through the blood–brain barrier and better in vivo stability compared to native rhFGF-2. The enhanced stability and bioavailability of PEGylated rhFGF-2 make this molecule a great therapeutic candidate for neurodegenerative diseases such as PD and mood disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aarsland D, Pahlhagen S, Ballard CG, Ehrt U, Svenningsson P (2012) Depression in Parkinson disease—epidemiology, mechanisms and management. Nat Rev Neurol 8(1):35–47. doi:10.1038/nrneurol.2011.189

    Article  CAS  Google Scholar 

  2. Schapira AH, Olanow CW (2004) Neuroprotection in Parkinson disease: Mysteries, myths, and misconceptions. JAMA 291(3):358–364. doi:10.1001/jama.291.3.358

    Article  CAS  PubMed  Google Scholar 

  3. Shrivastava P, Vaibhav K, Tabassum R, Khan A, Ishrat T, Khan MM, Ahmad A, Islam F, Safhi MM (2013) Anti-apoptotic and anti-inflammatory effect of Piperine on 6-OHDA induced Parkinson’s rat model. J Nutr Biochem 24(4):680–687. doi:10.1016/j.jnutbio.2012.03.018

    Article  CAS  PubMed  Google Scholar 

  4. Hardwick A, Ward H, Hassan A, Romrell J, Okun MS (2013) Clozapine as a potential treatment for refractory impulsive, compulsive, and punding behaviors in Parkinson’s disease. Neurocase 19(6):587–591. doi:10.1080/13554794.2012.713490

    Article  CAS  PubMed  Google Scholar 

  5. Litteljohn D, Hayley S (2012) Cytokines as potential biomarkers for Parkinson’s disease: a multiplex approach. Methods Mol Biol 934:121–144. doi:10.1007/978-1-62703-071-7_7

    Article  PubMed  Google Scholar 

  6. de Oliveira GP, Duobles T, Castelucci P, Chadi G (2010) Differential regulation of FGF-2 in neurons and reactive astrocytes of axotomized rat hypoglossal nucleus. A possible therapeutic target for neuroprotection in peripheral nerve pathology. Acta Histochem 112(6):604–617. doi:10.1016/j.acthis.2009.06.008

    Article  PubMed  Google Scholar 

  7. Rose K, Litterscheid S, Klumpp S, Krieglstein J (2009) Fibroblast growth factor 2 requires complex formation with ATP for neuroprotective activity. Neuroscience 164(4):1695–1700. doi:10.1016/j.neuroscience.2009.09.055

    Article  CAS  PubMed  Google Scholar 

  8. Ma YP, Ma MM, Cheng SM, Ma HH, Yi XM, Xu GL, Liu XF (2008) Intranasal bFGF-induced progenitor cell proliferation and neuroprotection after transient focal cerebral ischemia. Neurosci Lett 437(2):93–97. doi:10.1016/j.neulet.2008.04.003

    Article  CAS  PubMed  Google Scholar 

  9. Klejbor I, Myers JM, Hausknecht K, Corso TD, Gambino AS, Morys J, Maher PA, Hard R, Richards J, Stachowiak EK, Stachowiak MK (2006) Fibroblast growth factor receptor signaling affects development and function of dopamine neurons—Inhibition results in a schizophrenia-like syndrome in transgenic mice. J Neurochem 97(5):1243–1258. doi:10.1111/j.1471-4159.2006.03754.x

    Article  CAS  PubMed  Google Scholar 

  10. Kawamata T, Dietrich WD, Schallert T, Gotts JE, Cocke RR, Benowitz LI, Finklestein SP (1997) Intracisternal basic fibroblast growth factor enhances functional recovery and up-regulates the expression of a molecular marker of neuronal sprouting following focal cerebral infarction. Proc Natl Acad Sci U S A 94(15):8179–8184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Yoshimura S, Teramoto T, Whalen MJ, Irizarry MC, Takagi Y, Qiu J, Harada J, Waeber C, Breakefield XO, Moskowitz MA (2003) FGF-2 regulates neurogenesis and degeneration in the dentate gyrus after traumatic brain injury in mice. J Clin Invest 112(8):1202–1210. doi:10.1172/JCI16618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Liu Z, Holmes GL (1997) Basic fibroblast growth factor is highly neuroprotective against seizure-induced long-term behavioural deficits. Neuroscience 76(4):1129–1138

    Article  CAS  PubMed  Google Scholar 

  13. Jin K, LaFevre-Bernt M, Sun Y, Chen S, Gafni J, Crippen D, Logvinova A, Ross CA, Greenberg DA, Ellerby LM (2005) FGF-2 promotes neurogenesis and neuroprotection and prolongs survival in a transgenic mouse model of Huntington’s disease. Proc Natl Acad Sci U S A 102(50):18189–18194. doi:10.1073/pnas.0506375102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Drinkut A, Tereshchenko Y, Schulz JB, Bahr M, Kugler S (2012) Efficient gene therapy for Parkinson’s disease using astrocytes as hosts for localized neurotrophic factor delivery. Mol Ther J Am Soc Gene Ther 20(3):534–543. doi:10.1038/mt.2011.249

    Article  CAS  Google Scholar 

  15. Jevsevar S, Kunstelj M, Porekar VG (2010) PEGylation of therapeutic proteins. Biotechnol J 5(1):113–128. doi:10.1002/biot.200900218

    Article  CAS  PubMed  Google Scholar 

  16. Huang Z, Ye C, Liu Z, Wang X, Chen H, Liu Y, Tang L, Zhao H, Wang J, Feng W, Li X (2012) Solid-phase N-terminus PEGylation of recombinant human fibroblast growth factor 2 on heparin-sepharose column. Bioconjug Chem 23(4):740–750. doi:10.1021/bc200550f

    Article  CAS  PubMed  Google Scholar 

  17. Wang Z, Zhang H, Xu X, Shi H, Yu X, Wang X, Yan Y, Fu X, Hu H, Li X, Xiao J (2012) bFGF inhibits ER stress induced by ischemic oxidative injury via activation of the PI3K/Akt and ERK1/2 pathways. Toxicol Lett 212(2):137–146. doi:10.1016/j.toxlet.2012.05.006

    Article  CAS  PubMed  Google Scholar 

  18. Hashitani T, Mizukawa K, Kumazaki M, Nishino H (1998) Dopamine metabolism in the striatum of hemiparkinsonian model rats with dopaminergic grafts. Neurosci Res 30(1):43–52

    Article  CAS  PubMed  Google Scholar 

  19. Han B, Hu J, Shen J, Gao Y, Lu Y, Wang T (2013) Neuroprotective effect of hydroxysafflor yellow A on 6-hydroxydopamine-induced Parkinson’s disease in rats. Eur J Pharmacol 714(1–3):83–88. doi:10.1016/j.ejphar.2013.06.011

    Article  CAS  PubMed  Google Scholar 

  20. Soslow RA, Dannenberg AJ, Rush D, Woerner BM, Khan KN, Masferrer J, Koki AT (2000) COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer 89(12):2637–2645

    Article  CAS  PubMed  Google Scholar 

  21. Zhang HY, Zhang X, Wang ZG, Shi HX, Wu FZ, Lin BB, Xu XL, Wang XJ, Fu XB, Li ZY, Shen CJ, Li XK, Xiao J (2013) Exogenous basic fibroblast growth factor inhibits ER stress-induced apoptosis and improves recovery from spinal cord injury. CNS Neuroscience & Therapeutics 19(1):20–29. doi:10.1111/cns.12013

    Article  CAS  Google Scholar 

  22. Yang F, Yang YP, Mao CJ, Cao BY, Cai ZL, Shi JJ, Huang JZ, Zhang P, Liu CF (2009) Role of autophagy and proteasome degradation pathways in apoptosis of PC12 cells overexpressing human alpha-synuclein. Neurosci Lett 454(3):203–208. doi:10.1016/j.neulet.2009.03.027

    Article  CAS  PubMed  Google Scholar 

  23. Huang Z, Zheng Q, Wu X, Su Z, Xu H, Tan Y, Feng W, Li X, Cai L (2007) Enhanced protection of modified human acidic fibroblast growth factor with polyethylene glycol against ischemia/reperfusion-induced retinal damage in rats. Toxicol Lett 170(2):146–156. doi:10.1016/j.toxlet.2007.03.001

    Article  CAS  PubMed  Google Scholar 

  24. Gonzalez AM, Berry M, Maher PA, Logan A, Baird A (1995) A comprehensive analysis of the distribution of FGF-2 and FGFR1 in the rat brain. Brain Res 701(1–2):201–226

    Article  CAS  PubMed  Google Scholar 

  25. Yoshimura S, Takagi Y, Harada J, Teramoto T, Thomas SS, Waeber C, Bakowska JC, Breakefield XO, Moskowitz MA (2001) FGF-2 regulation of neurogenesis in adult hippocampus after brain injury. Proc Natl Acad Sci U S A 98(10):5874–5879. doi:10.1073/pnas.101034998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Date I, Yoshimoto Y, Imaoka T, Miyoshi Y, Gohda Y, Furuta T, Asari S, Ohmoto T (1993) Enhanced recovery of the nigrostriatal dopaminergic system in MPTP-treated mice following intrastriatal injection of basic fibroblast growth factor in relation to aging. Brain Res 621(1):150–154

    Article  CAS  PubMed  Google Scholar 

  27. Young CK, Koke SJ, Kiss ZH, Bland BH (2009) Deep brain stimulation of the posterior hypothalamic nucleus reverses akinesia in bilaterally 6-hydroxydopamine-lesioned rats. Neuroscience 162(1):1–4. doi:10.1016/j.neuroscience.2009.04.053

    Article  CAS  PubMed  Google Scholar 

  28. Epstein SE, Fuchs S, Zhou YF, Baffour R, Kornowski R (2001) Therapeutic interventions for enhancing collateral development by administration of growth factors: basic principles, early results and potential hazards. Cardiovasc Res 49(3):532–542

    Article  CAS  PubMed  Google Scholar 

  29. Hu J, Duppatla V, Harth S, Schmitz W, Sebald W (2010) Site-specific PEGylation of bone morphogenetic protein-2 cysteine analogues. Bioconjug Chem 21(10):1762–1772. doi:10.1021/bc9005706

    Article  CAS  PubMed  Google Scholar 

  30. Teismann P, Schulz JB (2004) Cellular pathology of Parkinson’s disease: astrocytes, microglia and inflammation. Cell Tissue Res 318(1):149–161. doi:10.1007/s00441-004-0944-0

    Article  PubMed  Google Scholar 

  31. Tatton WG, Chalmers-Redman R, Brown D, Tatton N (2003) Apoptosis in Parkinson’s disease: Signals for neuronal degradation. Ann Neurol 53(Suppl 3):S61–S70. doi:10.1002/ana.10489, discussion S70-62

    Article  CAS  PubMed  Google Scholar 

  32. Miho Y, Kouroku Y, Fujita E, Mukasa T, Urase K, Kasahara T, Isoai A, Momoi MY, Momoi T (1999) bFGF inhibits the activation of caspase-3 and apoptosis of P19 embryonal carcinoma cells during neuronal differentiation. Cell Death Differ 6(5):463–470. doi:10.1038/sj.cdd.4400506

    Article  CAS  PubMed  Google Scholar 

  33. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37(1):13–25. doi:10.1016/j.nbd.2009.07.030

    Article  CAS  PubMed  Google Scholar 

  34. Liu Y, Li J, Shao K, Huang R, Ye L, Lou J, Jiang C (2010) A leptin derived 30-amino-acid peptide modified pegylated poly-L-lysine dendrigraft for brain targeted gene delivery. Biomaterials 31(19):5246–5257. doi:10.1016/j.biomaterials.2010.03.011

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. Regina Goetz and Moosa Mohammadi for critically reading the manuscript and making thoughtful suggestions. This work was supported, in part, by grants from Natural Science Foundation of China, 81102486, 81010012 (to Z.H. and X.L.); Zhejiang Key Group Project in Scientific Innovation 2010R10042-01 (to Z.H.); Ningbo Natural Science Foundation (2013A610272 to C.Y.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianlou Niu or Zhifeng Huang.

Additional information

Guanghui Zhu, Ganping Chen, Lu Shi, and Jenny Feng contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, G., Chen, G., Shi, L. et al. PEGylated rhFGF-2 Conveys Long-term Neuroprotection and Improves Neuronal Function in a Rat Model of Parkinson’s Disease. Mol Neurobiol 51, 32–42 (2015). https://doi.org/10.1007/s12035-014-8750-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8750-5

Keywords

Navigation