Skip to main content
Log in

Physiological and Pathological Functions of Mechanosensitive Ion Channels

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Rapid sensation of mechanical stimuli is often mediated by mechanosensitve ion channels. Their opening results from conformational changes induced by mechanical forces. It leads to membrane permeation of selected ions and thereby to electrical signaling. Newly identified mechanosensitive ion channels are emerging at an astonishing rate, including some that are traditionally assigned for completely different functions. In this review, we first provide a brief overview of ion channels that are known to play a role in mechanosensation. Next, we focus on three representative ones, including the transient receptor potential channel V4 (TRPV4), Kv1.1 voltage-gated potassium (Kv) channel, and Piezo channels. Their structures, biophysical properties, expression and targeting patterns, and physiological functions are highlighted. The potential role of their mechanosensation in related diseases is further discussed. In sum, mechanosensation appears to be achieved in a variety of ways by different proteins and plays a fundamental role in the function of various organs under normal and abnormal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Eyckmans J et al (2011) A hitchhiker's guide to mechanobiology. Dev Cell 21(1):35–47

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Tyler WJ (2012) The mechanobiology of brain function. Nat Rev Neurosci 13(12):867–878

    Article  PubMed  CAS  Google Scholar 

  3. Gillespie PG, Walker RG (2001) Molecular basis of mechanosensory transduction. Nature 413(6852):194–202

    Article  PubMed  CAS  Google Scholar 

  4. Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7(4):265–275

    Article  PubMed  CAS  Google Scholar 

  5. Sachs F (2010) Stretch-activated ion channels: what are they? Physiology (Bethesda) 25(1):50–56

    Article  CAS  Google Scholar 

  6. Haswell ES, Phillips R, Rees DC (2011) Mechanosensitive channels: what can they do and how do they do it? Structure 19(10):1356–1369

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Roudaut Y et al (2012) Touch sense: functional organization and molecular determinants of mechanosensitive receptors. Channels (Austin) 6(4):234–245

    Article  CAS  Google Scholar 

  8. Hao J et al (2013) Kv1.1 channels act as mechanical brake in the senses of touch and pain. Neuron 77(5):899–914

    Article  PubMed  CAS  Google Scholar 

  9. Corey DP, Hudspeth AJ (1979) Response latency of vertebrate hair cells. Biophys Jo 26(3):499–506

    Article  CAS  Google Scholar 

  10. Coste B et al (2012) Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483(7388):176–181

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. McCarter GC, Reichling DB, Levine JD (1999) Mechanical transduction by rat dorsal root ganglion neurons in vitro. Neurosci Lett 273(3):179–182

    Article  PubMed  CAS  Google Scholar 

  12. Davis MJ, Donovitz JA, Hood JD (1992) Stretch-activated single-channel and whole cell currents in vascular smooth muscle cells. Am J Physiol 262(4 Pt 1):C1083–C1088

    PubMed  CAS  Google Scholar 

  13. Praetorius HA, Spring KR (2001) Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184(1):71–79

    Article  PubMed  CAS  Google Scholar 

  14. Maroto R et al (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7(2):179–185

    Article  PubMed  CAS  Google Scholar 

  15. Hao J, Delmas P (2010) Multiple desensitization mechanisms of mechanotransducer channels shape firing of mechanosensory neurons. J Neurosci 30(40):13384–13395

    Article  PubMed  CAS  Google Scholar 

  16. Nilius B, Honore E (2012) Sensing pressure with ion channels. Trends Neurosci 35(8):477–486

    Article  PubMed  CAS  Google Scholar 

  17. Christensen AP, Corey DP (2007) TRP channels in mechanosensation: direct or indirect activation? Nat Rev Neurosci 8(7):510–521

    Article  PubMed  CAS  Google Scholar 

  18. Arnadottir J, Chalfie M (2010) Eukaryotic mechanosensitive channels. Annu Rev Biophys 39:111–137

    Article  PubMed  CAS  Google Scholar 

  19. Sukharev SI et al (1994) A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368(6468):265–268

    Article  PubMed  CAS  Google Scholar 

  20. Cosens DJ, Manning A (1969) Abnormal electroretinogram from a Drosophila mutant. Nature 224(5216):285–287

    Article  PubMed  CAS  Google Scholar 

  21. Montell C, Rubin GM (1989) Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2(4):1313–1323

    Article  PubMed  CAS  Google Scholar 

  22. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    Article  PubMed  CAS  Google Scholar 

  23. Liedtke W, Kim C (2005) Functionality of the TRPV subfamily of TRP ion channels: add mechano-TRP and osmo-TRP to the lexicon! Cell Mol Life Sci 62(24):2985–3001

    Article  PubMed  CAS  Google Scholar 

  24. Palmer CP et al (2001) A TRP homolog in Saccharomyces cerevisiae forms an intracellular Ca(2+)-permeable channel in the yeast vacuolar membrane. Proc Natl Acad Sci U S A 98(14):7801–7805

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Guler AD et al (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22(15):6408–6414

    PubMed  CAS  Google Scholar 

  26. Xiao R, Xu XZ (2010) Mechanosensitive channels: in touch with Piezo. Curr Biol 20(21):R936–R938

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Liedtke W, Friedman JM (2003) Abnormal osmotic regulation in trpv4−/− mice. Proc Natl Acad Sci U S A 100(23):13698–13703

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Lamande SR et al (2011) Mutations in TRPV4 cause an inherited arthropathy of hands and feet. Nat Genet 43(11):1142–1146

    Article  PubMed  CAS  Google Scholar 

  29. Lei L et al (2013) A TRPV4 channel C-terminal folding recognition domain critical for trafficking and function. J Biol Chem 288(15):10427–10439

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Watanabe H et al (2003) Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424(6947):434–438

    Article  PubMed  CAS  Google Scholar 

  31. Sidhaye VK et al (2006) Transient receptor potential vanilloid 4 regulates aquaporin-5 abundance under hypotonic conditions. Proc Natl Acad Sci U S A 103(12):4747–4752

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Vriens J et al (2004) Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci U S A 101(1):396–401

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Liedtke W et al (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103(3):525–535

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Strotmann R et al (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2(10):695–702

    Article  PubMed  CAS  Google Scholar 

  35. D'Hoedt D et al (2008) Stimulus-specific modulation of the cation channel TRPV4 by PACSIN 3. J Biol Chem 283(10):6272–6280

    Article  PubMed  Google Scholar 

  36. Cuajungco MP et al (2006) PACSINs bind to the TRPV4 cation channel. PACSIN 3 modulates the subcellular localization of TRPV4. J Biol Chem 281(27):18753–18762

    Article  PubMed  CAS  Google Scholar 

  37. Suzuki M et al (2003) Impaired pressure sensation in mice lacking TRPV4. J Biol Chem 278(25):22664–22668

    Article  PubMed  CAS  Google Scholar 

  38. Fernandes J et al (2008) IP3 sensitizes TRPV4 channel to the mechano- and osmotransducing messenger 5′–6′-epoxyeicosatrienoic acid. J Cell Biol 181(1):143–155

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Garcia-Elias A et al (2008) IP3 receptor binds to and sensitizes TRPV4 channel to osmotic stimuli via a calmodulin-binding site. J Biol Chem 283(46):31284–31288

    Article  PubMed  CAS  Google Scholar 

  40. Alessandri-Haber N et al (2008) Interaction of transient receptor potential vanilloid 4, integrin, and SRC tyrosine kinase in mechanical hyperalgesia. J Neurosci 28(5):1046–1057

    Article  PubMed  CAS  Google Scholar 

  41. Shibasaki K et al (2007) Effects of body temperature on neural activity in the hippocampus: regulation of resting membrane potentials by transient receptor potential vanilloid 4. J Neurosci 27(7):1566–1575

    Article  PubMed  CAS  Google Scholar 

  42. Bai JZ, Lipski J (2010) Differential expression of TRPM2 and TRPV4 channels and their potential role in oxidative stress-induced cell death in organotypic hippocampal culture. Neurotoxicology 31(2):204–214

    Article  PubMed  CAS  Google Scholar 

  43. Deng HX et al (2010) Scapuloperoneal spinal muscular atrophy and CMT2C are allelic disorders caused by alterations in TRPV4. Nat Genet 42(2):165–169

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Landoure G et al (2010) Mutations in TRPV4 cause Charcot–Marie–Tooth disease type 2C. Nat Genet 42(2):170–174

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Zimon M et al (2010) Dominant mutations in the cation channel gene transient receptor potential vanilloid 4 cause an unusual spectrum of neuropathies. Brain 133(Pt 6):1798–1809

    Article  PubMed  PubMed Central  Google Scholar 

  46. Auer-Grumbach M et al (2010) Alterations in the ankyrin domain of TRPV4 cause congenital distal SMA, scapuloperoneal SMA and HMSN2C. Nat Genet 42(2):160–164

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Zhang DX et al (2009) Transient receptor potential vanilloid type 4-deficient mice exhibit impaired endothelium-dependent relaxation induced by acetylcholine in vitro and in vivo. Hypertension 53(3):532–538

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. O'Conor CJ et al (2013) Increased susceptibility of Trpv4-deficient mice to obesity and obesity-induced osteoarthritis with very high-fat diet. Ann Rheum Dis 72(2):300–304

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gu C, Barry J (2011) Function and mechanism of axonal targeting of voltage-sensitive potassium channels. Prog Neurobiol 94(2):115–132

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Gu C et al (2006) The microtubule plus-end tracking protein EB1 is required for Kv1 voltage-gated K + channel axonal targeting. Neuron 52(5):803–816

    Article  PubMed  CAS  Google Scholar 

  51. Xu M et al (2007) The axon-dendrite targeting of Kv3 (Shaw) channels is determined by a targeting motif that associates with the T1 domain and ankyrin G. J Neurosci 27(51):14158–14170

    Article  PubMed  CAS  Google Scholar 

  52. Barry J et al (2013) Activation of conventional kinesin motors in clusters by Shaw voltage-gated K+ channels. J Cell Sci 126(Pt 9):2027–2041

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Gu C, Gu Y (2010) Clustering and activity tuning of Kv1 channels in myelinated hippocampal axons. J Biol Chem 286(29):25835–25847

    Article  Google Scholar 

  54. Tabarean IV, Morris CE (2002) Membrane stretch accelerates activation and slow inactivation in Shaker channels with S3–S4 linker deletions. Biophys J 82(6):2982–2994

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Laitko U, Morris CE (2004) Membrane tension accelerates rate-limiting voltage-dependent activation and slow inactivation steps in a Shaker channel. J Gen Physiol 123(2):135–154

    Article  PubMed  PubMed Central  Google Scholar 

  56. Robbins CA, Tempel BL (2012) Kv1.1 and Kv1.2: similar channels, different seizure models. Epilepsia 53(Suppl 1):134–141

    Article  PubMed  CAS  Google Scholar 

  57. Simeone TA et al (2013) Loss of the Kv1.1 potassium channel promotes pathologic sharp waves and high frequency oscillations in in vitro hippocampal slices. Neurobiol Dis 54:68–81

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Zenker J et al (2012) Altered distribution of juxtaparanodal Kv1.2 subunits mediates peripheral nerve hyperexcitability in type 2 diabetes mellitus. J Neurosci 32(22):7493–7498

    Article  PubMed  CAS  Google Scholar 

  59. Van der Wijst J et al (2010) Functional analysis of the Kv1.1 N255D mutation associated with autosomal dominant hypomagnesemia. J Biol Chem 285(1):171–178

    Article  PubMed  PubMed Central  Google Scholar 

  60. Glaudemans B et al (2009) A missense mutation in the Kv1.1 voltage-gated potassium channel-encoding gene KCNA1 is linked to human autosomal dominant hypomagnesemia. J Clin Invest 119(4):936–942

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Coste B et al (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330(6000):55–60

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Gottlieb PA, Sachs F (2012) Piezo1: properties of a cation selective mechanical channel. Channels (Austin) 6(4):214–219

    Article  CAS  Google Scholar 

  63. Zarychanski R et al (2012) Mutations in the mechanotransduction protein PIEZO1 are associated with hereditary xerocytosis. Blood 120(9):1908–1915

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Andolfo I et al (2013) Multiple clinical forms of dehydrated hereditary stomatocytosis arise from mutations in PIEZO1. Blood 121(19):3925–3935, S1–12

    Article  PubMed  CAS  Google Scholar 

  65. Coste B et al (2013) Gain-of-function mutations in the mechanically activated ion channel PIEZO2 cause a subtype of Distal Arthrogryposis. Proc Natl Acad Sci U S A 110(12):4667–4672

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Kim SE et al (2012) The role of Drosophila Piezo in mechanical nociception. Nature 483(7388):209–212

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Dubin AE et al (2012) Inflammatory signals enhance piezo2-mediated mechanosensitive currents. Cell Rep 2(3):511–517

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. Barry J, Gu C (2013) Coupling mechanical forces to electrical signaling: molecular motors and the intracellular transport of ion channels. Neuroscientist 19(2):145–159

    Article  PubMed  PubMed Central  Google Scholar 

  69. Barry J et al (2014) Ankyrin-G directly binds to Kinesin-1 to transport voltage-gated Na+ channels into axons. Dev Cell 28:117–131

    Article  PubMed  CAS  Google Scholar 

  70. Xu M et al (2010) Kinesin I transports tetramerized Kv3 channels through the axon initial segment via direct binding. J Neurosci 30(47):15987–16001

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  71. Gu Y et al (2012) Alternative splicing regulates Kv3.1 polarized targeting to adjust maximal spiking frequency. J Biol Chem 287(3):1755–1769

    Google Scholar 

  72. Kindt KS et al (2007) Caenorhabditis elegans TRPA-1 functions in mechanosensation. Nat Neurosci 10(5):568–577

    Article  PubMed  CAS  Google Scholar 

  73. Brierley SM et al (2011) TRPA1 contributes to specific mechanically activated currents and sensory neuron mechanical hypersensitivity. J Physiol 589(Pt 14):3575–3593

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Spassova MA et al (2006) A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci U S A 103(44):16586–16591

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  75. Feng NH et al (2008) Transient receptor potential vanilloid type 1 channels act as mechanoreceptors and cause substance P release and sensory activation in rat kidneys. Am J Physiol Renal Physiol 294(2):F316–F325

    Article  PubMed  CAS  Google Scholar 

  76. Morita H et al (2007) Membrane stretch-induced activation of a TRPM4-like nonselective cation channel in cerebral artery myocytes. J Pharmacol Sci 103(4):417–426

    Article  PubMed  CAS  Google Scholar 

  77. Numata T, Shimizu T, Okada Y (2007) TRPM7 is a stretch- and swelling-activated cation channel involved in volume regulation in human epithelial cells. Am J Physiol Cell Physiol 292(1):C460–C467

    Article  PubMed  CAS  Google Scholar 

  78. Kang L et al (2010) C. elegans TRP family protein TRP-4 is a pore-forming subunit of a native mechanotransduction channel. Neuron 67(3):381–391

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  79. Berrout J, Jin M, O'Neil RG (2012) Critical role of TRPP2 and TRPC1 channels in stretch-induced injury of blood–brain barrier endothelial cells. Brain Res 1436:1–12

    Article  PubMed  CAS  Google Scholar 

  80. Zhao H, Sokabe M (2008) Tuning the mechanosensitivity of a BK channel by changing the linker length. Cell Res 18(8):871–878

    Article  PubMed  CAS  Google Scholar 

  81. Maingret F et al (1999) Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J Biol Chem 274(38):26691–26696

    Article  PubMed  CAS  Google Scholar 

  82. Brohawn SG, del Marmol J, MacKinnon R (2012) Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Science 335(6067):436–441

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  83. Lin W et al (2007) Dual stretch responses of mHCN2 pacemaker channels: accelerated activation, accelerated deactivation. Biophys J 92(5):1559–1572

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  84. Beyder A et al (2010) Mechanosensitivity of Nav1.5, a voltage-sensitive sodium channel. J Physiol 588(Pt 24):4969–4985

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  85. Kraichely RE et al (2009) Lysophosphatidyl choline modulates mechanosensitive L-type Ca2+ current in circular smooth muscle cells from human jejunum. Am J Physiol Gastrointest Liver Physiol 296(4):G833–G839

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. Calabrese B et al (2002) Mechanosensitivity of N-type calcium channel currents. Biophys J 83(5):2560–2574

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  87. Hilaire C et al (2012) Neurotrophin-4 modulates the mechanotransducer Cav3.2 T-type calcium current in mice down-hair neurons. Biochem J 441(1):463–471

    Article  PubMed  CAS  Google Scholar 

  88. Zhang WK et al (2010) Mechanosensitive gating of CFTR. Nat Cell Biol 12(5):507–512

    Article  PubMed  CAS  Google Scholar 

  89. Hong K, Driscoll M (1994) A transmembrane domain of the putative channel subunit MEC-4 influences mechanotransduction and neurodegeneration in C. elegans. Nature 367(6462):470–473

    Article  PubMed  CAS  Google Scholar 

  90. Arnadottir J et al (2011) The DEG/ENaC protein MEC-10 regulates the transduction channel complex in Caenorhabditis elegans touch receptor neurons. J Neurosci 31(35):12695–12704

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  91. McIlwrath SL et al (2005) The sensory mechanotransduction ion channel ASIC2 (acid sensitive ion channel 2) is regulated by neurotrophin availability. Neuroscience 131(2):499–511

    Article  PubMed  CAS  Google Scholar 

  92. Singh P et al (2012) N-Methyl-d-aspartate receptor mechanosensitivity is governed by C terminus of NR2B subunit. J Biol Chem 287(6):4348–4359

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  93. Bao L, Sachs F, Dahl G (2004) Connexins are mechanosensitive. Am J Physiol Cell Physiol 287(5):C1389–C1395

    Article  PubMed  CAS  Google Scholar 

  94. Pan B et al (2013) TMC1 and TMC2 are components of the mechanotransduction channel in hair cells of the mammalian inner ear. Neuron 79(3):504–515

    Article  PubMed  CAS  Google Scholar 

  95. Jang Y et al (2012) Axonal neuropathy-associated TRPV4 regulates neurotrophic factor-derived axonal growth. J Biol Chem 287(8):6014–6024

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  96. Rasband MN, Trimmer JS (2001) Subunit composition and novel localization of K+ channels in spinal cord. J Comp Neurol 429(1):166–176

    Article  PubMed  CAS  Google Scholar 

  97. Nilius B (2010) Pressing and squeezing with Piezos. EMBO Rep 11(12):902–903

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the US National Institute of Neurological Disorders and Stroke/National Institutes of Health (R01NS062720) to C.G. We thank Peter Jukkola for editing the manuscript, and apologize to authors whose work is not included in this review due to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, Y., Gu, C. Physiological and Pathological Functions of Mechanosensitive Ion Channels. Mol Neurobiol 50, 339–347 (2014). https://doi.org/10.1007/s12035-014-8654-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8654-4

Keywords

Navigation