Skip to main content

Advertisement

Log in

Transcription of the Human Sodium Channel SCN1A Gene Is Repressed by a Scaffolding Protein RACK1

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Voltage-gated sodium channel α subunit type I (Nav1.1, encoded by SCN1A gene) plays a critical role in the initiation of action potential in the central nervous system. Downregulated expression of SCN1A is believed to be associated with epilepsy. Here, we found that the SCN1A promoter (P1c), located at the 5′ untranslated exon 1c, drove the reporter gene expression in human NT2 cells, and a region between nt +53 and +62 downstream of the P1c promoter repressed the promoter activity. Further analyses showed that a scaffolding protein RACK1 (receptor for activated C kinase 1) was involved in binding to this silencer. Knockdown of RACK1 expression in NT2 cells deprived the repressive role of the silencer on the P1c promoter and increased SCN1A transcription, suggesting the potential involvement of RACK1 in negatively regulating SCN1A transcription via interaction with the silencer. Furthermore, we demonstrated that the binding of the protein complex including RACK1 to the SCN1A promoter motif was decreased in neuron-like differentiation of the NT2 cells induced by retinoic acid and resulted in the upregulation of SCN1A transcription. Taken together, this study reports a novel role of RACK1 in regulating SCN1A expression that participates in retinoic acid-induced neuronal differentiation of NT2 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Beckh S, Noda M, Lubbert H, Numa S (1989) Differential regulation of three sodium channel messenger RNAs in the rat central nervous system during development. EMBO J 8:3611–3616

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Gong B, Rhodes KJ, Bekele-Arcuri Z, Trimmer JS (1999) Type I and type II Na(+) channel alpha-subunit polypeptides exhibit distinct spatial and temporal patterning, and association with auxiliary subunits in rat brain. J Comp Neurol 412:342–352

    Article  PubMed  CAS  Google Scholar 

  3. Whitaker WR, Faull RL, Waldvogel HJ, Plumpton CJ, Emson PC, Clare JJ (2001) Comparative distribution of voltage-gated sodium channel proteins in human brain. Brain Res Mol Brain Res 88:37–53

    Article  PubMed  CAS  Google Scholar 

  4. Escayg A, MacDonald BT, Meisler MH, Baulac S, Huberfeld G, An-Gourfinkel I, Brice A, LeGuern E, Moulard B, Chaigne D, Buresi C, Malafosse A (2000) Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. Nat Genet 24:343–345

    Article  PubMed  CAS  Google Scholar 

  5. Vahedi K, Depienne C, Le Fort D, Riant F, Chaine P, Trouillard O, Gaudric A, Morris MA, Leguern E, Tournier-Lasserve E, Bousser MG (2009) Elicited repetitive daily blindness: a new phenotype associated with hemiplegic migraine and SCN1A mutations. Neurology 72:1178–1183

    Article  PubMed  CAS  Google Scholar 

  6. Weiss LA, Escayg A, Kearney JA, Trudeau M, MacDonald BT, Mori M, Reichert J, Buxbaum JD, Meisler MH (2003) Sodium channels SCN1A, SCN2A and SCN3A in familial autism. Mol Psychiatry 8:186–194

    Article  PubMed  CAS  Google Scholar 

  7. Liao WP, Shi YW, Long YS, Zeng Y, Li T, Yu MJ, Su T, Deng P, Lei ZG, Xu SJ, Deng WY, Liu XR, Sun WW, Yi YH, Xu ZC, Duan S (2010) Partial epilepsy with antecedent febrile seizures and seizure aggravation by antiepileptic drugs: associated with loss of function of Na(v) 1.1. Epilepsia 51:1669–1678

    Article  PubMed  CAS  Google Scholar 

  8. Meisler MH, Kearney JA (2005) Sodium channel mutations in epilepsy and other neurological disorders. J Clin Invest 115:2010–2017

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Yu FH, Mantegazza M, Westenbroek RE, Robbins CA, Kalume F, Burton KA, Spain WJ, McKnight GS, Scheuer T, Catterall WA (2006) Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat Neurosci 9:1142–1149

    Article  PubMed  CAS  Google Scholar 

  10. Long YS, Zhao QH, Su T, Cai YL, Zeng Y, Shi YW, Yi YH, Chang HH, Liao WP (2008) Identification of the promoter region and the 5′-untranslated exons of the human voltage-gated sodium channel Na(v)1.1 gene (SCN1A) and enhancement of gene expression by the 5′-untranslated exons. J Neurosci Res 86:3375–3381

    Article  PubMed  CAS  Google Scholar 

  11. Martin MS, Tang B, Ta N, Escayg A (2007) Characterization of 5′ untranslated regions of the voltage-gated sodium channels SCN1A, SCN2A, and SCN3A and identification of cis-conserved noncoding sequences. Genomics 90:225–235

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Long YS, Shi YW, Liao WP (2009) Conservation-based prediction of the transcription regulatory region of the SCN1A gene. Prog Nat Sci 19:1675–1681

    Article  CAS  Google Scholar 

  13. Nakayama T, Ogiwara I, Ito K, Kaneda M, Mazaki E, Osaka H, Ohtani H, Inoue Y, Fujiwara T, Uematsu M, Haginoya K, Tsuchiya S, Yamakawa K (2010) Deletions of SCN1A 5′ genomic region with promoter activity in Dravet syndrome. Hum Mutat 31:820–829

    Article  PubMed  CAS  Google Scholar 

  14. Neer EJ, Schmidt CJ, Nambudripad R, Smith TF (1994) The ancient regulatory-protein family of WD-repeat proteins. Nature 371:297–300

    Article  PubMed  CAS  Google Scholar 

  15. Adams DR, Ron D, Kiely PA (2011) RACK1, a multifaceted scaffolding protein: structure and function. Cell Commun Signal 9:22

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Ashique AM, Kharazia V, Yaka R, Phamluong K, Peterson AS, Ron D (2006) Localization of the scaffolding protein RACK1 in the developing and adult mouse brain. Brain Res 1069:31–38

    Article  PubMed  CAS  Google Scholar 

  17. Robles MS, Boyault C, Knutti D, Padmanabhan K, Weitz CJ (2010) Identification of RACK1 and protein kinase Calpha as integral components of the mammalian circadian clock. Science 327:463–466

    Article  PubMed  CAS  Google Scholar 

  18. Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791

    Article  PubMed  CAS  Google Scholar 

  19. Sklan EH, Podoly E, Soreq H (2006) RACK1 has the nerve to act: structure meets function in the nervous system. Prog Neurobiol 78:117–134

    Article  PubMed  CAS  Google Scholar 

  20. Farchi N, Ofek K, Podoly E, Dong H, Xiang YY, Diamant S, Livnah O, Li J, Hochner B, Lu WY, Soreq H (2007) Peripheral site acetylcholinesterase blockade induces RACK1-associated neuronal remodeling. Neurodegener Dis 4:171–184

    Article  PubMed  CAS  Google Scholar 

  21. Li Y, Peart MJ, Prives C (2009) Stxbp4 regulates DeltaNp63 stability by suppression of RACK1-dependent degradation. Mol Cell Biol 29:3953–3963

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Ofek K, Soreq H (2012) Cholinergic involvement and manipulation approaches in multiple system disorders. Chem Biol Interact 203:113–119

    Article  PubMed  Google Scholar 

  23. Nahar-Gohad P, Sultan H, Esteban Y, Stabile A, Ko JL (2013) RACK1 identified as the PCBP1-interacting protein with a novel functional role on the regulation of human MOR gene expression. J Neurochem 124:466–477

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Neasta J, Kiely PA, He DY, Adams DR, O’Connor R, Ron D (2012) Direct interaction between scaffolding proteins RACK1 and 14-3-3zeta regulates brain-derived neurotrophic factor (BDNF) transcription. J Biol Chem 287:322–336

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Kawasaki H, Taira K (2003) Hes1 is a target of microRNA-23 during retinoic-acid-induced neuronal differentiation of NT2 cells. Nature 423:838–842

    Article  PubMed  CAS  Google Scholar 

  26. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  PubMed  CAS  Google Scholar 

  27. Bourd-Boittin K, Le Pabic H, Bonnier D, L’Helgoualc’h A, Theret N (2008) RACK1, a new ADAM12 interacting protein. Contribution to liver fibrogenesis. J Biol Chem 283:26000–26009

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Drews VL, Lieberman AP, Meisler MH (2005) Multiple transcripts of sodium channel SCN8A (Na(V)1.6) with alternative 5′- and 3′-untranslated regions and initial characterization of the SCN8A promoter. Genomics 85:245–257

    Article  PubMed  CAS  Google Scholar 

  29. Diss JK, Calissano M, Gascoyne D, Djamgoz MB, Latchman DS (2008) Identification and characterization of the promoter region of the Nav1.7 voltage-gated sodium channel gene (SCN9A). Mol Cell Neurosci 37:537–547

    Article  PubMed  CAS  Google Scholar 

  30. Bell AC, West AG, Felsenfeld G (2001) Insulators and boundaries: versatile regulatory elements in the eukaryotic genome. Science 291:447–450

    Article  PubMed  CAS  Google Scholar 

  31. Overdier DG, Csonka LN (1992) A transcriptional silencer downstream of the promoter in the osmotically controlled proU operon of Salmonella typhimurium. Proc Natl Acad Sci U S A 89:3140–3144

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. He DY, Neasta J, Ron D (2010) Epigenetic regulation of BDNF expression via the scaffolding protein RACK1. J Biol Chem 285:19043–19050

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Chong JA, Tapia-Ramirez J, Kim S, Toledo-Aral JJ, Zheng Y, Boutros MC, Altshuller YM, Frohman MA, Kraner SD, Mandel G (1995) REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 80:949–957

    Article  PubMed  CAS  Google Scholar 

  34. Schoenherr CJ, Anderson DJ (1995) The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267:1360–1363

    Article  PubMed  CAS  Google Scholar 

  35. Guillemot F, Billault A, Auffray C (1989) Physical linkage of a guanine nucleotide-binding protein-related gene to the chicken major histocompatibility complex. Proc Natl Acad Sci U S A 86:4594–4598

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Pick M, Perry C, Lapidot T, Guimaraes-Sternberg C, Naparstek E, Deutsch V, Soreq H (2006) Stress-induced cholinergic signaling promotes inflammation-associated thrombopoiesis. Blood 107:3397–3406

    Article  PubMed  CAS  Google Scholar 

  37. Kuczewski N, Porcher C, Lessmann V, Medina I, Gaiarsa JL (2009) Activity-dependent dendritic release of BDNF and biological consequences. Mol Neurobiol 39:37–49

    Article  PubMed  CAS  Google Scholar 

  38. Wan L, Xie Y, Su L, Liu Y, Wang Y, Wang Z (2011) RACK1 affects morphine reward via BDNF. Brain Res 1416:26–34

    Article  PubMed  CAS  Google Scholar 

  39. Battaini F, Pascale A, Lucchi L, Pasinetti GM, Govoni S (1999) Protein kinase C anchoring deficit in postmortem brains of Alzheimer’s disease patients. Exp Neurol 159:559–564

    Article  PubMed  CAS  Google Scholar 

  40. Peyrl A, Weitzdoerfer R, Gulesserian T, Fountoulakis M, Lubec G (2002) Aberrant expression of signaling-related proteins 14-3-3 gamma and RACK1 in fetal Down syndrome brain (trisomy 21). Electrophoresis 23:152–157

    Article  PubMed  CAS  Google Scholar 

  41. He DY, Vagts AJ, Yaka R, Ron D (2002) Ethanol induces gene expression via nuclear compartmentalization of receptor for activated C kinase 1. Mol Pharmacol 62:272–280

    Article  PubMed  CAS  Google Scholar 

  42. Catterall WA, Kalume F, Oakley JC (2010) NaV1.1 channels and epilepsy. J Physiol 588:1849–1859

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Cheah CS, Yu FH, Westenbroek RE, Kalume FK, Oakley JC, Potter GB, Rubenstein JL, Catterall WA (2012) Specific deletion of NaV1.1 sodium channels in inhibitory interneurons causes seizures and premature death in a mouse model of Dravet syndrome. Proc Natl Acad Sci U S A 109:14646–14651

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (31070928, 81371436, 81271434, and 81171073), the Guangzhou Scholar Project (10A011G), and the Scientific Research of Guangzhou Municipal Colleges and Universities (10A211). We are grateful to the He Shanheng Charity Foundation for contributing to the development of this institute.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Sheng Long.

Additional information

Zhao-Fei Dong and Ling-Jia Tang contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 46 kb)

ESM 2

(XLS 271 kb)

ESM 3

(DOC 47 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, ZF., Tang, LJ., Deng, GF. et al. Transcription of the Human Sodium Channel SCN1A Gene Is Repressed by a Scaffolding Protein RACK1. Mol Neurobiol 50, 438–448 (2014). https://doi.org/10.1007/s12035-014-8633-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8633-9

Keywords

Navigation