Skip to main content

Advertisement

Log in

Lipid Rafts in Neurodegeneration and Neuroprotection

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The collective properties of the lipids that form biological membranes give rise to a very high level of lateral organization within the membranes. Lipid-driven membrane organization allows the segregation of membrane-associated components into specific lipid rafts, which function as dynamic platforms for signal transduction, protein processing, and membrane turnover. A number of events essential for the functional integrity of the nervous system occur in lipid rafts and depend on lipid raft organization. Alterations of lipid composition that lead to abnormal lipid raft organization and consequent deregulation of lipid raft-dependent signaling are often associated with neurodegenerative diseases. The amyloidogenic processing of proteins involved in the pathogenesis of major nervous system diseases, including Alzheimer’s disease and Parkinson’s disease, requires lipid raft-dependent compartmentalization at the membrane level. Improved understanding of the forces that control lipid raft organization will facilitate the development of novel strategies for the effective prevention and treatment of neurodegenerative and age-related brain diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

Aβ:

Amyloid-β peptide

AICD:

APP intracellular C terminus domain

APP:

Amyloid precursor protein

GalCer:

Galactosylceramide

GD:

Gaucher’s disease

GlcCer:

Glucosylceramide

GlcNAc:

N-acetylglucosamine

GPL:

Glycerophospholipid

GSL:

Glycosphingolipid

HD:

Huntington’s disease

ld :

Liquid-disordered

lo :

Liquid-ordered

MAG:

Myelin-associated glycoprotein

NCAM:

Neural cell adhesion molecule

PC:

Phosphatidylcholine

PD:

Parkinson’s disease

PrP:

Prion protein

SL:

Sphingolipid

SM:

Sphingomyelin

References

  1. IUPAC–IUBMB, JCoBN (1998) Nomenclature of glycolipids. Carbohydr Res 312:167–175

    Google Scholar 

  2. Sonnino S, Prinetti A (2013) Membrane domains and the “lipid raft” concept. Curr Med Chem 20:4–21

    PubMed  CAS  Google Scholar 

  3. Cantu L, Del Favero E, Sonnino S, Prinetti A (2011) Gangliosides and the multiscale modulation of membrane structure. Chem Phys Lipids 164:796–810

    PubMed  CAS  Google Scholar 

  4. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    PubMed  CAS  Google Scholar 

  5. Steim JM, Tourtellotte ME, Reinert JC, McElhaney RN, Rader RL (1969) Calorimetric evidence for the liquid-crystalline state of lipids in a biomembrane. Proc Natl Acad Sci U S A 63:104–109

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Kucerka N, Tristram-Nagle S, Nagle JF (2006) Closer look at structure of fully hydrated fluid phase DPPC bilayers. Biophys J 90:L83–L85

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Lindner R, Naim HY (2009) Domains in biological membranes. Exp Cell Res 315:2871–2878

    PubMed  CAS  Google Scholar 

  8. Kusumi A, Fujiwara TK, Chadda R, Xie M, Tsunoyama TA, Kalay Z, Kasai RS, Suzuki KG (2012) Dynamic organizing principles of the plasma membrane that regulate signal transduction: commemorating the fortieth anniversary of Singer and Nicolson’s fluid-mosaic model. Annu Rev Cell Dev Biol 28:215–250

    PubMed  CAS  Google Scholar 

  9. van Meer G, de Kroon AI (2011) Lipid map of the mammalian cell. J Cell Sci 124:5–8

    PubMed  Google Scholar 

  10. Merrill AH Jr (2011) Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 111:6387–6422

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Sullards MC, Liu Y, Chen Y, Merrill AH Jr (2011) Analysis of mammalian sphingolipids by liquid chromatography tandem mass spectrometry (LC-MS/MS) and tissue imaging mass spectrometry (TIMS). Biochim Biophys Acta 1811:838–853

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Mullen TD, Hannun YA, Obeid LM (2012) Ceramide synthases at the centre of sphingolipid metabolism and biology. Biochem J 441:789–802

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Sandhoff R (2010) Very long chain sphingolipids: tissue expression, function and synthesis. FEBS Lett 584:1907–1913

    PubMed  CAS  Google Scholar 

  14. Pruett ST, Bushnev A, Hagedorn K, Adiga M, Haynes CA, Sullards MC, Liotta DC, Merrill AH Jr (2008) Biodiversity of sphingoid bases (“sphingosines”) and related amino alcohols. J Lipid Res 49:1621–1639

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Sonnino S, Chigorno V (2000) Ganglioside molecular species containing C18- and C20-sphingosine in mammalian nervous tissues and neuronal cell cultures. Biochim Biophys Acta 1469:63–77

    PubMed  CAS  Google Scholar 

  16. Piccinini M, Scandroglio F, Prioni S, Buccinna B, Loberto N, Aureli M, Chigorno V, Lupino E, DeMarco G, Lomartire A, Rinaudo MT, Sonnino S, Prinetti A (2010) Deregulated sphingolipid metabolism and membrane organization in neurodegenerative disorders. Mol Neurobiol 41:314–340

    PubMed  CAS  Google Scholar 

  17. Aureli M, Loberto N, Lanteri P, Chigorno V, Prinetti A, Sonnino S (2011) Cell surface sphingolipid glycohydrolases in neuronal differentiation and aging in culture. J Neurochem 116:891–899

    PubMed  CAS  Google Scholar 

  18. Yu RK, Nakatani Y, Yanagisawa M (2009) The role of glycosphingolipid metabolism in the developing brain. J Lipid Res 50:S440–S445

    PubMed  PubMed Central  Google Scholar 

  19. Tidhar R, Futerman AH (2013) The complexity of sphingolipid biosynthesis in the endoplasmic reticulum. Biochim Biophys Acta 1833:2511–2518

    PubMed  CAS  Google Scholar 

  20. van Meer G, Hoetzl S (2010) Sphingolipid topology and the dynamic organization and function of membrane proteins. FEBS Lett 584:1800–1805

    PubMed  Google Scholar 

  21. Haughey NJ (2010) Sphingolipids in neurodegeneration. Neuromol Med 12:301–305

    CAS  Google Scholar 

  22. Marin R, Rojo JA, Fabelo N, Fernandez CE, Diaz M (2013) Lipid raft disarrangement as a result of neuropathological progresses: a novel strategy for early diagnosis? Neuroscience 245:26–39

    PubMed  CAS  Google Scholar 

  23. Reitz C (2013) Dyslipidemia and the risk of Alzheimer’s disease. Curr Atheroscler Rep 15:307

    PubMed  PubMed Central  Google Scholar 

  24. Lee AG, Birdsall NJ, Metcalfe JC, Toon PA, Warren GB (1974) Clusters in lipid bilayers and the interpretation of thermal effects in biological membranes. Biochemistry 13:3699–3705

    PubMed  CAS  Google Scholar 

  25. Wunderlich F, Ronai A, Speth V, Seelig J, Blume A (1975) Thermotropic lipid clustering in tetrahymena membranes. Biochemistry 14:3730–3735

    PubMed  CAS  Google Scholar 

  26. Wunderlich F, Ronai A (1975) Adaptive lowering of the lipid clustering temperature within Tetrahymena membranes. FEBS Lett 55:237–241

    PubMed  CAS  Google Scholar 

  27. Wunderlich F, Kreutz W, Mahler P, Ronai A, Heppeler G (1978) Thermotropic fluid goes to ordered “discontinuous” phase separation in microsomal lipids of Tetrahymena. An X-ray diffraction study. Biochemistry 17:2005–2010

    PubMed  CAS  Google Scholar 

  28. Karnovsky MJ, Kleinfeld AM, Hoover RL, Klausner RD (1982) The concept of lipid domains in membranes. J Cell Biol 94:1–6

    PubMed  CAS  Google Scholar 

  29. Koynova R, Caffrey M (1998) Phases and phase transitions of the phosphatidylcholines. Biochim Biophys Acta 1376:91–145

    PubMed  CAS  Google Scholar 

  30. Caffrey M, Kerr DS, Feng L, Koynova R, Ding L (1998) LIPIDAT: a web-based relational database of lipid phase transition types, temperatures, enthalpy changes and molecular structures. Biophys J 74:A315–A315

    Google Scholar 

  31. Koynova R, Caffrey M (1995) Phases and phase transitions of the sphingolipids. Biochim Biophys Acta 1255:213–236

    PubMed  Google Scholar 

  32. Goni FM, Alonso A, Bagatolli LA, Brown RE, Marsh D, Prieto M, Thewalt JL (2008) Phase diagrams of lipid mixtures relevant to the study of membrane rafts. Biochim Biophys Acta 1781:665–684

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Westerlund B, Slotte JP (2009) How the molecular features of glycosphingolipids affect domain formation in fluid membranes. Biochim Biophys Acta 1788:194–201

    PubMed  CAS  Google Scholar 

  34. Elson EL, Fried E, Dolbow JE, Genin GM (2010) Phase separation in biological membranes: integration of theory and experiment. Annu Rev Biophys 39:207–226

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Prinetti A, Chigorno V, Prioni S, Loberto N, Marano N, Tettamanti G, Sonnino S (2001) Changes in the lipid turnover, composition, and organization, as sphingolipid-enriched membrane domains, in rat cerebellar granule cells developing in vitro. J Biol Chem 276:21136–21145

    PubMed  CAS  Google Scholar 

  36. O’Brien JS, Sampson EL (1965) Fatty acid and fatty aldehyde composition of the major brain lipids in normal human gray matter, white matter, and myelin. J Lipid Res 6:545–551

    PubMed  Google Scholar 

  37. Sastry PS (1985) Lipids of nervous tissue: composition and metabolism. Prog Lipid Res 24:69–176

    PubMed  CAS  Google Scholar 

  38. O’Brien JS, Sampson EL (1965) Lipid composition of the normal human brain: gray matter, white matter, and myelin. J Lipid Res 6:537–544

    PubMed  Google Scholar 

  39. Prinetti A, Chigorno V, Tettamanti G, Sonnino S (2000) Sphingolipid-enriched membrane domains from rat cerebellar granule cells differentiated in culture. A compositional study. J Biol Chem 275:11658–11665

    PubMed  CAS  Google Scholar 

  40. Mouritsen OG (2010) The liquid-ordered state comes of age. Biochim Biophys Acta 1798:1286–1288

    PubMed  CAS  Google Scholar 

  41. Ipsen JH, Karlstrom G, Mouritsen OG, Wennerstrom H, Zuckermann MJ (1987) Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta 905:162–172

    PubMed  CAS  Google Scholar 

  42. Bagatolli LA, Ipsen JH, Simonsen AC, Mouritsen OG (2010) An outlook on organization of lipids in membranes: searching for a realistic connection with the organization of biological membranes. Prog Lipid Res 49:378–389

    PubMed  CAS  Google Scholar 

  43. Quinn PJ, Wolf C (2009) The liquid-ordered phase in membranes. Biochim Biophys Acta 1788:33–46

    PubMed  CAS  Google Scholar 

  44. Sonnino S, Prinetti A (2010) Lipids and membrane lateral organization. Front Physiol 1:153

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Fantini J, Barrantes FJ (2009) Sphingolipid/cholesterol regulation of neurotransmitter receptor conformation and function. Biochim Biophys Acta 1788:2345–2361

    PubMed  CAS  Google Scholar 

  46. Pandit SA, Jakobsson E, Scott HL (2004) Simulation of the early stages of nano-domain formation in mixed bilayers of sphingomyelin, cholesterol, and dioleylphosphatidylcholine. Biophys J 87:3312–3322

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Mombelli E, Morris R, Taylor W, Fraternali F (2003) Hydrogen-bonding propensities of sphingomyelin in solution and in a bilayer assembly: a molecular dynamics study. Biophys J 84:1507–1517

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Pascher I (1976) Molecular arrangements in sphingolipids. Conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability. Biochim Biophys Acta 455:433–451

    PubMed  CAS  Google Scholar 

  49. van Meer G, Simons K (1988) Lipid polarity and sorting in epithelial cells. J Cell Biochem 36:51–58

    PubMed  Google Scholar 

  50. Klemm RW, Ejsing CS, Surma MA, Kaiser HJ, Gerl MJ, Sampaio JL, de Robillard Q, Ferguson C, Proszynski TJ, Shevchenko A, Simons K (2009) Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network. J Cell Biol 185:601–612

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    PubMed  CAS  Google Scholar 

  52. Sonnino S, Prinetti A (2008) Membrane lipid domains and membrane lipid domain preparations: are they the same thing? Trends Glycosci Glycotechnol 20:315–340

    CAS  Google Scholar 

  53. Lingwood D, Ries J, Schwille P, Simons K (2008) Plasma membranes are poised for activation of raft phase coalescence at physiological temperature. Proc Natl Acad Sci U S A 105:10005–10010

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Kaiser HJ, Lingwood D, Levental I, Sampaio JL, Kalvodova L, Rajendran L, Simons K (2009) Order of lipid phases in model and plasma membranes. Proc Natl Acad Sci U S A 106:16645–16650

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schonle A, Hell SW (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:1159–1162

    PubMed  CAS  Google Scholar 

  56. Belkind-Gerson J, Carreon-Rodriguez A, Contreras-Ochoa CO, Estrada-Mondaca S, Parra-Cabrera MS (2008) Fatty acids and neurodevelopment. J Pediatr Gastroenterol Nutr 47(Suppl 1):S7–S9

    PubMed  CAS  Google Scholar 

  57. Iwabuchi K, Nakayama H, Masuda H, Kina K, Ogawa H, Takamori K (2012) Membrane microdomains in immunity: glycosphingolipid-enriched domain-mediated innate immune responses. Biofactors 38:275–283

    PubMed  CAS  Google Scholar 

  58. Frisz JF, Lou K, Klitzing HA, Hanafin WP, Lizunov V, Wilson RL, Carpenter KJ, Kim R, Hutcheon ID, Zimmerberg J, Weber PK, Kraft ML (2013) Direct chemical evidence for sphingolipid domains in the plasma membranes of fibroblasts. Proc Natl Acad Sci U S A 110:E613–E622

    PubMed  PubMed Central  CAS  Google Scholar 

  59. Folch-Pi J (1968) The composition of nervous membranes. Prog Brain Res 29:1–17

    PubMed  CAS  Google Scholar 

  60. Svennerholm L, Bostrom K, Jungbjer B, Olsson L (1994) Membrane lipids of adult human brain: lipid composition of frontal and temporal lobe in subjects of age 20 to 100 years. J Neurochem 63:1802–1811

    PubMed  CAS  Google Scholar 

  61. Stoffel W, Bosio A (1997) Myelin glycolipids and their functions. Curr Opin Neurobiol 7:654–661

    PubMed  CAS  Google Scholar 

  62. Aggarwal S, Yurlova L, Simons M (2011) Central nervous system myelin: structure, synthesis and assembly. Trends Cell Biol 21:585–593

    PubMed  CAS  Google Scholar 

  63. Saher G, Quintes S, Nave KA (2011) Cholesterol: a novel regulatory role in myelin formation. Neuroscientist 17:79–93

    PubMed  CAS  Google Scholar 

  64. Pfrieger FW, Ungerer N (2011) Cholesterol metabolism in neurons and astrocytes. Prog Lipid Res 50:357–371

    PubMed  CAS  Google Scholar 

  65. Maccarrone M, Bernardi G, Agro AF, Centonze D (2011) Cannabinoid receptor signalling in neurodegenerative diseases: a potential role for membrane fluidity disturbance. Br J Pharmacol 163:1379–1390

    PubMed  PubMed Central  CAS  Google Scholar 

  66. Levental I, Grzybek M, Simons K (2010) Greasing their way: lipid modifications determine protein association with membrane rafts. Biochemistry 49:6305–6316

    PubMed  CAS  Google Scholar 

  67. Fantini J (2007) Interaction of proteins with lipid rafts through glycolipid-binding domains: biochemical background and potential therapeutic applications. Curr Med Chem 14:2911–2917

    PubMed  CAS  Google Scholar 

  68. Yahi N, Aulas A, Fantini J (2010) How cholesterol constrains glycolipid conformation for optimal recognition of Alzheimer’s beta amyloid peptide (Abeta1-40). PLoS ONE 5:e9079

    PubMed  PubMed Central  Google Scholar 

  69. Fantini J, Yahi N (2010) Molecular insights into amyloid regulation by membrane cholesterol and sphingolipids: common mechanisms in neurodegenerative diseases. Expert Rev Mol Med 12:e27

    PubMed  PubMed Central  Google Scholar 

  70. Fantini J, Carlus D, Yahi N (2011) The fusogenic tilted peptide (67-78) of alpha-synuclein is a cholesterol binding domain. Biochim Biophys Acta 1808:2343–2351

    PubMed  CAS  Google Scholar 

  71. Fantini J, Yahi N (2011) Molecular basis for the glycosphingolipid-binding specificity of alpha-synuclein: key role of tyrosine 39 in membrane insertion. J Mol Biol 408:654–669

    PubMed  CAS  Google Scholar 

  72. Baier CJ, Fantini J, Barrantes FJ (2012) Disclosure of cholesterol recognition motifs in transmembrane domains of the human nicotinic acetylcholine receptor. Sci Rep 1:69

    Google Scholar 

  73. Chattopadhyay A, Paila YD, Shrivastava S, Tiwari S, Singh P, Fantini J (2012) Sphingolipid-binding domain in the serotonin (1A) receptor. Adv Exp Med Biol 749:279–293

    PubMed  CAS  Google Scholar 

  74. Di Scala C, Yahi N, Lelievre C, Garmy N, Chahinian H, Fantini J (2013) Biochemical identification of a linear cholesterol-binding domain within Alzheimer’s beta amyloid peptide. ACS Chem Neurosci 4:509–517

    PubMed  PubMed Central  Google Scholar 

  75. Pryor S, McCaffrey G, Young LR, Grimes ML (2012) NGF causes TrkA to specifically attract microtubules to lipid rafts. PLoS ONE 7:e35163

    PubMed  PubMed Central  CAS  Google Scholar 

  76. Ichikawa N, Iwabuchi K, Kurihara H, Ishii K, Kobayashi T, Sasaki T, Hattori N, Mizuno Y, Hozumi K, Yamada Y, Arikawa-Hirasawa E (2009) Binding of laminin-1 to monosialoganglioside GM1 in lipid rafts is crucial for neurite outgrowth. J Cell Sci 122:289–299

    PubMed  PubMed Central  CAS  Google Scholar 

  77. Pereira DB, Chao MV (2007) The tyrosine kinase Fyn determines the localization of TrkB receptors in lipid rafts. J Neurosci 27:4859–4869

    PubMed  CAS  Google Scholar 

  78. Sebastiao AM, Assaife-Lopes N, Diogenes MJ, Vaz SH, Ribeiro JA (2011) Modulation of brain-derived neurotrophic factor (BDNF) actions in the nervous system by adenosine A(2A) receptors and the role of lipid rafts. Biochim Biophys Acta 1808:1340–1349

    PubMed  CAS  Google Scholar 

  79. Assaife-Lopes N, Sousa VC, Pereira DB, Ribeiro JA and Sebastiao AM (2013) Regulation of TrkB receptor translocation to lipid rafts by adenosine A receptors and its functional implications for BDNF-induced regulation of synaptic plasticity. Purinergic Signal (in press)

  80. Saarma M (2001) GDNF recruits the signaling crew into lipid rafts. Trends Neurosci 24:427–429

    PubMed  CAS  Google Scholar 

  81. Yang XL, Xiong WC, Mei L (2004) Lipid rafts in neuregulin signaling at synapses. Life Sci 75:2495–2504

    PubMed  CAS  Google Scholar 

  82. Gauthier LR, Robbins SM (2003) Ephrin signaling: one raft to rule them all? One raft to sort them? One raft to spread their call and in signaling bind them? Life Sci 74:207–216

    PubMed  CAS  Google Scholar 

  83. Bruckner K, Pablo Labrador J, Scheiffele P, Herb A, Seeburg PH, Klein R (1999) EphrinB ligands recruit GRIP family PDZ adaptor proteins into raft membrane microdomains. Neuron 22:511–524

    PubMed  CAS  Google Scholar 

  84. Dainese E, Oddi S, Maccarrone M (2010) Interaction of endocannabinoid receptors with biological membranes. Curr Med Chem 17:1487–1499

    PubMed  CAS  Google Scholar 

  85. Xapelli S, Agasse F, Sarda-Arroyo L, Bernardino L, Santos T, Ribeiro FF, Valero J, Braganca J, Schitine C, de Melo Reis RA, Sebastiao AM, Malva JO (2013) Activation of type 1 cannabinoid receptor (CB1R) promotes neurogenesis in murine subventricular zone cell cultures. PLoS ONE 8:e63529

    PubMed  PubMed Central  Google Scholar 

  86. D’Ambrosi N, Volonte C (2013) Metabotropic purinergic receptors in lipid membrane microdomains. Curr Med Chem 20:56–63

    PubMed  Google Scholar 

  87. Fang J, Han D, Hong J, Tan Q, Tian Y (2012) The chemokine, macrophage inflammatory protein-2gamma, reduces the expression of glutamate transporter-1 on astrocytes and increases neuronal sensitivity to glutamate excitotoxicity. J Neuroinflammation 9:267

    PubMed  PubMed Central  CAS  Google Scholar 

  88. Lasley RD (2011) Adenosine receptors and membrane microdomains. Biochim Biophys Acta 1808:1284–1289

    PubMed  PubMed Central  CAS  Google Scholar 

  89. Assaife-Lopes N, Sousa VC, Pereira DB, Ribeiro JA, Chao MV, Sebastiao AM (2010) Activation of adenosine A2A receptors induces TrkB translocation and increases BDNF-mediated phospho-TrkB localization in lipid rafts: implications for neuromodulation. J Neurosci 30:8468–8480

    PubMed  CAS  Google Scholar 

  90. Kumari R, Castillo C, Francesconi A (2013) Agonist-dependent signaling by group I metabotropic glutamate receptors is regulated by association with lipid domains. J Biol Chem 288:32004–32019

    PubMed  CAS  Google Scholar 

  91. Padgett CL, Slesinger PA (2010) GABAB receptor coupling to G-proteins and ion channels. Adv Pharmacol 58:123–147

    PubMed  CAS  Google Scholar 

  92. Chini B, Parenti M (2004) G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there? J Mol Endocrinol 32:325–338

    PubMed  CAS  Google Scholar 

  93. Cole AA, Dosemeci A, Reese TS (2010) Co-segregation of AMPA receptors with G(M1) ganglioside in synaptosomal membrane subfractions. Biochem J 427:535–540

    PubMed  PubMed Central  CAS  Google Scholar 

  94. Delint-Ramirez I, Salcedo-Tello P, Bermudez-Rattoni F (2008) Spatial memory formation induces recruitment of NMDA receptor and PSD-95 to synaptic lipid rafts. J Neurochem 106:1658–1668

    PubMed  CAS  Google Scholar 

  95. Francesconi A, Kumari R, Zukin RS (2009) Regulation of group I metabotropic glutamate receptor trafficking and signaling by the caveolar/lipid raft pathway. J Neurosci 29:3590–3602

    PubMed  PubMed Central  CAS  Google Scholar 

  96. Delint-Ramirez I, Fernandez E, Bayes A, Kicsi E, Komiyama NH, Grant SG (2010) In vivo composition of NMDA receptor signaling complexes differs between membrane subdomains and is modulated by PSD-95 and PSD-93. J Neurosci 30:8162–8170

    PubMed  PubMed Central  CAS  Google Scholar 

  97. Mukherjee A, Arnaud L, Cooper JA (2003) Lipid-dependent recruitment of neuronal Src to lipid rafts in the brain. J Biol Chem 278:40806–40814

    PubMed  CAS  Google Scholar 

  98. Sekino-Suzuki N, Yuyama K, Miki T, Kaneda M, Suzuki H, Yamamoto N, Yamamoto T, Oneyama C, Okada M, Kasahara K (2013) Involvement of gangliosides in the process of Cbp/PAG phosphorylation by Lyn in developing cerebellar growth cones. J Neurochem 124:514–522

    PubMed  CAS  Google Scholar 

  99. Scorticati C, Formoso K, Frasch AC (2011) Neuronal glycoprotein M6a induces filopodia formation via association with cholesterol-rich lipid rafts. J Neurochem 119:521–531

    PubMed  CAS  Google Scholar 

  100. Zhao H, Cao X, Wu G, Loh HH, Law PY (2009) Neurite outgrowth is dependent on the association of c-Src and lipid rafts. Neurochem Res 34:2197–2205

    PubMed  Google Scholar 

  101. Santuccione A, Sytnyk V, Leshchyns’ka I, Schachner M (2005) Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowth. J Cell Biol 169:341–354

    PubMed  PubMed Central  CAS  Google Scholar 

  102. Kasahara K, Watanabe Y, Yamamoto T, Sanai Y (1997) Association of Src family tyrosine kinase Lyn with ganglioside GD3 in rat brain. Possible regulation of Lyn by glycosphingolipid in caveolae-like domains. J Biol Chem 272:29947–29953

    PubMed  CAS  Google Scholar 

  103. Kasahara K, Watanabe K, Kozutsumi Y, Oohira A, Yamamoto T, Sanai Y (2002) Association of GPI-anchored protein TAG-1 with src-family kinase Lyn in lipid rafts of cerebellar granule cells. Neurochem Res 27:823–829

    PubMed  CAS  Google Scholar 

  104. Miki T, Kaneda M, Iida K, Hasegawa G, Murakami M, Yamamoto N, Asou H, Kasahara K (2013) An anti-sulfatide antibody O4 immunoprecipitates sulfatide rafts including Fyn, Lyn and the G protein alpha subunit in rat primary immature oligodendrocytes. Glycoconj J 30:819–823

    PubMed  CAS  Google Scholar 

  105. Prinetti A, Prioni S, Chigorno V, Karagogeos D, Tettamanti G, Sonnino S (2001) Immunoseparation of sphingolipid-enriched membrane domains enriched in Src family protein tyrosine kinases and in the neuronal adhesion molecule TAG-1 by anti-GD3 ganglioside monoclonal antibody. J Neurochem 78:1162–1167

    PubMed  CAS  Google Scholar 

  106. Ge X, Qiu Y, Loh HH, Law PY (2009) GRIN1 regulates micro-opioid receptor activities by tethering the receptor and G protein in the lipid raft. J Biol Chem 284:36521–36534

    PubMed  PubMed Central  CAS  Google Scholar 

  107. Grider MH, Park D, Spencer DM, Shine HD (2009) Lipid raft-targeted Akt promotes axonal branching and growth cone expansion via mTOR and Rac1, respectively. J Neurosci Res 87:3033–3042

    PubMed  CAS  Google Scholar 

  108. Yuyama K, Sekino-Suzuki N, Sanai Y, Kasahara K (2007) Translocation of activated heterotrimeric G protein Galpha(o) to ganglioside-enriched detergent-resistant membrane rafts in developing cerebellum. J Biol Chem 282:26392–26400

    PubMed  CAS  Google Scholar 

  109. Delling M, Wischmeyer E, Dityatev A, Sytnyk V, Veh RW, Karschin A, Schachner M (2002) The neural cell adhesion molecule regulates cell-surface delivery of G-protein-activated inwardly rectifying potassium channels via lipid rafts. J Neurosci 22:7154–7164

    PubMed  CAS  Google Scholar 

  110. Kramer EM, Klein C, Koch T, Boytinck M, Trotter J (1999) Compartmentation of Fyn kinase with glycosylphosphatidylinositol-anchored molecules in oligodendrocytes facilitates kinase activation during myelination. J Biol Chem 274:29042–29049

    PubMed  CAS  Google Scholar 

  111. Loberto N, Prioni S, Prinetti A, Ottico E, Chigorno V, Karagogeos D, Sonnino S (2003) The adhesion protein TAG-1 has a ganglioside environment in the sphingolipid-enriched membrane domains of neuronal cells in culture. J Neurochem 85:224–233

    PubMed  CAS  Google Scholar 

  112. Rege TA, Hagood JS (2006) Thy-1 as a regulator of cell-cell and cell-matrix interactions in axon regeneration, apoptosis, adhesion, migration, cancer, and fibrosis. FASEB J 20:1045–1054

    PubMed  CAS  Google Scholar 

  113. Suzuki T, Du F, Tian QB, Zhang J, Endo S (2008) Ca2+/calmodulin-dependent protein kinase IIalpha clusters are associated with stable lipid rafts and their formation traps PSD-95. J Neurochem 104:596–610

    PubMed  CAS  Google Scholar 

  114. Sebastiao AM, Colino-Oliveira M, Assaife-Lopes N, Dias RB, Ribeiro JA (2013) Lipid rafts, synaptic transmission and plasticity: impact in age-related neurodegenerative diseases. Neuropharmacology 64:97–107

    PubMed  CAS  Google Scholar 

  115. Yoon SJ, Nakayama K, Takahashi N, Yagi H, Utkina N, Wang HY, Kato K, Sadilek M, Hakomori SI (2006) Interaction of N-linked glycans, having multivalent GlcNAc termini, with GM3 ganglioside. Glycoconj J 23:639–649

    PubMed  CAS  Google Scholar 

  116. Yoon SJ, Nakayama K, Hikita T, Handa K, Hakomori SI (2006) Epidermal growth factor receptor tyrosine kinase is modulated by GM3 interaction with N-linked GlcNAc termini of the receptor. Proc Natl Acad Sci U S A 103:18987–18991

    PubMed  PubMed Central  CAS  Google Scholar 

  117. Coskun U, Grzybek M, Drechsel D, Simons K (2011) Regulation of human EGF receptor by lipids. Proc Natl Acad Sci U S A 108:9044–9048

    PubMed  PubMed Central  CAS  Google Scholar 

  118. Favaron M, Manev H, Alho H, Bertolino M, Ferret B, Guidotti A, Costa E (1988) Gangliosides prevent glutamate and kainate neurotoxicity in primary neuronal cultures of neonatal rat cerebellum and cortex. Proc Natl Acad Sci U S A 85:7351–7355

    PubMed  PubMed Central  CAS  Google Scholar 

  119. Skaper SD, Facci L, Milani D, Leon A (1989) Monosialoganglioside GM1 protects against anoxia-induced neuronal death in vitro. Exp Neurol 106:297–305

    PubMed  CAS  Google Scholar 

  120. Ferrari G, Anderson BL, Stephens RM, Kaplan DR, Greene LA (1995) Prevention of apoptotic neuronal death by GM1 ganglioside. Involvement of Trk neurotrophin receptors. J Biol Chem 270:3074–3080

    PubMed  CAS  Google Scholar 

  121. Ferrari G, Batistatou A, Greene LA (1993) Gangliosides rescue neuronal cells from death after trophic factor deprivation. J Neurosci 13:1879–1887

    PubMed  CAS  Google Scholar 

  122. Prinetti A, Iwabuchi K, Hakomori S (1999) Glycosphingolipid-enriched signaling domain in mouse neuroblastoma Neuro2a cells. Mechanism of ganglioside-dependent neuritogenesis. J Biol Chem 274:20916–20924

    PubMed  CAS  Google Scholar 

  123. Hadjiconstantinou M, Neff NH (1998) GM1 ganglioside: in vivo and in vitro trophic actions on central neurotransmitter systems. J Neurochem 70:1335–1345

    PubMed  CAS  Google Scholar 

  124. Bachis A, Rabin SJ, Del Fiacco M, Mocchetti I (2002) Gangliosides prevent excitotoxicity through activation of TrkB receptor. Neurotox Res 4:225–234

    PubMed  CAS  Google Scholar 

  125. Rabin SJ, Bachis A, Mocchetti I (2002) Gangliosides activate Trk receptors by inducing the release of neurotrophins. J Biol Chem 277:49466–49472

    PubMed  CAS  Google Scholar 

  126. Rabin SJ, Mocchetti I (1995) GM1 ganglioside activates the high-affinity nerve growth factor receptor trkA. J Neurochem 65:347–354

    PubMed  CAS  Google Scholar 

  127. Farooqui T, Franklin T, Pearl DK, Yates AJ (1997) Ganglioside GM1 enhances induction by nerve growth factor of a putative dimer of TrkA. J Neurochem 68:2348–2355

    PubMed  CAS  Google Scholar 

  128. Mutoh T, Tokuda A, Miyadai T, Hamaguchi M, Fujiki N (1995) Ganglioside GM1 binds to the Trk protein and regulates receptor function. Proc Natl Acad Sci U S A 92:5087–5091

    PubMed  PubMed Central  CAS  Google Scholar 

  129. Duchemin AM, Ren Q, Neff NH, Hadjiconstantinou M (2008) GM1-induced activation of phosphatidylinositol 3-kinase: involvement of Trk receptors. J Neurochem 104:1466–1477

    PubMed  CAS  Google Scholar 

  130. Duchemin AM, Ren Q, Mo L, Neff NH, Hadjiconstantinou M (2002) GM1 ganglioside induces phosphorylation and activation of Trk and Erk in brain. J Neurochem 81:696–707

    PubMed  CAS  Google Scholar 

  131. Mo L, Ren Q, Duchemin AM, Neff NH, Hadjiconstantinou M (2005) GM1 and ERK signaling in the aged brain. Brain Res 1054:125–134

    PubMed  CAS  Google Scholar 

  132. Guirland C, Suzuki S, Kojima M, Lu B, Zheng JQ (2004) Lipid rafts mediate chemotropic guidance of nerve growth cones. Neuron 42:51–62

    PubMed  CAS  Google Scholar 

  133. Suzuki S, Numakawa T, Shimazu K, Koshimizu H, Hara T, Hatanaka H, Mei L, Lu B, Kojima M (2004) BDNF-induced recruitment of TrkB receptor into neuronal lipid rafts: roles in synaptic modulation. J Cell Biol 167:1205–1215

    PubMed  PubMed Central  CAS  Google Scholar 

  134. Hibbert AP, Kramer BM, Miller FD, Kaplan DR (2006) The localization, trafficking and retrograde transport of BDNF bound to p75NTR in sympathetic neurons. Mol Cell Neurosci 32:387–402

    PubMed  CAS  Google Scholar 

  135. Mihara T, Ueda A, Hirayama M, Takeuchi T, Yoshida S, Naito K, Yamamoto H, Mutoh T (2006) Detection of new anti-neutral glycosphingolipids antibodies and their effects on Trk neurotrophin receptors. FEBS Lett 580:4991–4995

    PubMed  CAS  Google Scholar 

  136. Mojsilovic-Petrovic J, Jeong GB, Crocker A, Arneja A, David S, Russell DS, Kalb RG (2006) Protecting motor neurons from toxic insult by antagonism of adenosine A2a and Trk receptors. J Neurosci 26:9250–9263

    PubMed  CAS  Google Scholar 

  137. Mutoh T, Hamano T, Tokuda A, Kuriyama M (2000) Unglycosylated Trk protein does not co-localize nor associate with ganglioside GM1 in stable clone of PC12 cells overexpressing Trk (PCtrk cells). Glycoconj J 17:233–237

    PubMed  CAS  Google Scholar 

  138. Hasegawa T, Yamaguchi K, Wada T, Takeda A, Itoyama Y, Miyagi T (2000) Molecular cloning of mouse ganglioside sialidase and its increased expression in neuro2a cell differentiation. J Biol Chem 275:14778

    CAS  Google Scholar 

  139. Da Silva JS, Hasegawa T, Miyagi T, Dotti CG, Abad-Rodriguez J (2005) Asymmetric membrane ganglioside sialidase activity specifies axonal fate. Nat Neurosci 8:606–615

    PubMed  Google Scholar 

  140. Ueda A, Shima S, Miyashita T, Ito S, Ueda M, Kusunoki S, Asakura K, Mutoh T (2010) Anti-GM1 antibodies affect the integrity of lipid rafts. Mol Cell Neurosci 45:355–362

    PubMed  CAS  Google Scholar 

  141. Paratcha G, Ibanez CF (2002) Lipid rafts and the control of neurotrophic factor signaling in the nervous system: variations on a theme. Curr Opin Neurobiol 12:542–549

    PubMed  CAS  Google Scholar 

  142. Tsui-Pierchala BA, Encinas M, Milbrandt J, Johnson EM Jr (2002) Lipid rafts in neuronal signaling and function. Trends Neurosci 25:412–417

    PubMed  CAS  Google Scholar 

  143. Nagappan G, Lu B (2005) Activity-dependent modulation of the BDNF receptor TrkB: mechanisms and implications. Trends Neurosci 28:464–471

    PubMed  CAS  Google Scholar 

  144. Kasahara K, Watanabe K, Takeuchi K, Kaneko H, Oohira A, Yamamoto T, Sanai Y (2000) Involvement of gangliosides in glycosylphosphatidylinositol-anchored neuronal cell adhesion molecule TAG-1 signaling in lipid rafts. J Biol Chem 275:34701–34709

    PubMed  CAS  Google Scholar 

  145. Tansey MG, Baloh RH, Milbrandt J, Johnson EM Jr (2000) GFRalpha-mediated localization of RET to lipid rafts is required for effective downstream signaling, differentiation, and neuronal survival. Neuron 25:611–623

    PubMed  CAS  Google Scholar 

  146. Paratcha G, Ledda F, Baars L, Coulpier M, Besset V, Anders J, Scott R, Ibanez CF (2001) Released GFRalpha1 potentiates downstream signaling, neuronal survival, and differentiation via a novel mechanism of recruitment of c-Ret to lipid rafts. Neuron 29:171–184

    PubMed  CAS  Google Scholar 

  147. Yang J, Lindahl M, Lindholm P, Virtanen H, Coffey E, Runeberg-Roos P, Saarma M (2004) PSPN/GFRalpha4 has a significantly weaker capacity than GDNF/GFRalpha1 to recruit RET to rafts, but promotes neuronal survival and neurite outgrowth. FEBS Lett 569:267–271

    PubMed  CAS  Google Scholar 

  148. Pierchala BA, Milbrandt J, Johnson EM Jr (2006) Glial cell line-derived neurotrophic factor-dependent recruitment of Ret into lipid rafts enhances signaling by partitioning Ret from proteasome-dependent degradation. J Neurosci 26:2777–2787

    PubMed  CAS  Google Scholar 

  149. Lundgren TK, Luebke M, Stenqvist A, Ernfors P (2008) Differential membrane compartmentalization of Ret by PTB-adaptor engagement. FEBS J 275:2055–2066

    PubMed  CAS  Google Scholar 

  150. Lynch SA, Brugge JS, Levine JM (1986) Induction of altered c-src product during neural differentiation of embryonal carcinoma cells. Science 234:873–876

    PubMed  CAS  Google Scholar 

  151. Mellstrom K, Bjelfman C, Hammerling U, Pahlman S (1987) Expression of c-src in cultured human neuroblastoma and small-cell lung carcinoma cell lines correlates with neurocrine differentiation. Mol Cell Biol 7:4178–4184

    PubMed  PubMed Central  CAS  Google Scholar 

  152. Bjelfman C, Meyerson G, Cartwright CA, Mellstrom K, Hammerling U, Pahlman S (1990) Early activation of endogenous pp60src kinase activity during neuronal differentiation of cultured human neuroblastoma cells. Mol Cell Biol 10:361–370

    PubMed  PubMed Central  CAS  Google Scholar 

  153. den Hertog J, Pals CE, Peppelenbosch MP, Tertoolen LG, de Laat SW, Kruijer W (1993) Receptor protein tyrosine phosphatase alpha activates pp 60c-src and is involved in neuronal differentiation. EMBO J 12:3789–3798

    Google Scholar 

  154. Chakraborty M, Anderson GM, Chakraborty A, Chatterjee D (1993) Accumulation of high level of pp 60c-srcN is an early event during GM3-antibody mediated differentiation of neuro-2a neuroblastoma cells. Brain Res 625:197–202

    PubMed  CAS  Google Scholar 

  155. Cartwright CA, Simantov R, Kaplan PL, Hunter T, Eckhart W (1987) Alterations in pp 60c-src accompany differentiation of neurons from rat embryo striatum. Mol Cell Biol 7:1830–1840

    PubMed  PubMed Central  CAS  Google Scholar 

  156. Yu XM, Salter MW (1999) Src, a molecular switch governing gain control of synaptic transmission mediated by N-methyl-d-aspartate receptors. Proc Natl Acad Sci U S A 96:7697–7704

    PubMed  PubMed Central  CAS  Google Scholar 

  157. Foster-Barber A, Bishop JM (1998) Src interacts with dynamin and synapsin in neuronal cells. Proc Natl Acad Sci U S A 95:4673–4677

    PubMed  PubMed Central  CAS  Google Scholar 

  158. Loberto N, Prioni S, Bettiga A, Chigorno V, Prinetti A, Sonnino S (2005) The membrane environment of endogenous cellular prion protein in primary rat cerebellar neurons. J Neurochem 95:771–783

    PubMed  CAS  Google Scholar 

  159. Kamiguchi H (2006) The region-specific activities of lipid rafts during axon growth and guidance. J Neurochem 98:330–335

    PubMed  CAS  Google Scholar 

  160. Guirland C, Zheng JQ (2007) Membrane lipid rafts and their role in axon guidance. Adv Exp Med Biol 621:144–155

    PubMed  Google Scholar 

  161. Stuermer CA (2011) Microdomain-forming proteins and the role of the reggies/flotillins during axon regeneration in zebrafish. Biochim Biophys Acta 1812:415–422

    PubMed  CAS  Google Scholar 

  162. McKerracher L (2002) Ganglioside rafts as MAG receptors that mediate blockade of axon growth. Proc Natl Acad Sci U S A 99:7811–7813

    PubMed  PubMed Central  CAS  Google Scholar 

  163. Labasque M, Faivre-Sarrailh C (2010) GPI-anchored proteins at the node of Ranvier. FEBS Lett 584:1787–1792

    PubMed  CAS  Google Scholar 

  164. Boggs JM, Gao W, Zhao J, Park HJ, Liu Y, Basu A (2010) Participation of galactosylceramide and sulfatide in glycosynapses between oligodendrocyte or myelin membranes. FEBS Lett 584:1771–1778

    PubMed  CAS  Google Scholar 

  165. Eckhardt M (2008) The role and metabolism of sulfatide in the nervous system. Mol Neurobiol 37:93–103

    PubMed  CAS  Google Scholar 

  166. Marcus J, Popko B (2002) Galactolipids are molecular determinants of myelin development and axo-glial organization. Biochim Biophys Acta 1573:406–413

    PubMed  CAS  Google Scholar 

  167. Bosio A, Binczek E, Stoffel W (1996) Functional breakdown of the lipid bilayer of the myelin membrane in central and peripheral nervous system by disrupted galactocerebroside synthesis. Proc Natl Acad Sci U S A 93:13280–13285

    PubMed  PubMed Central  CAS  Google Scholar 

  168. Coetzee T, Fujita N, Dupree J, Shi R, Blight A, Suzuki K, Popko B (1996) Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and regional instability. Cell 86:209–219

    PubMed  CAS  Google Scholar 

  169. Hirahara Y, Bansal R, Honke K, Ikenaka K, Wada Y (2004) Sulfatide is a negative regulator of oligodendrocyte differentiation: development in sulfatide-null mice. Glia 45:269–277

    PubMed  Google Scholar 

  170. Fewou SN, Fernandes A, Stockdale K, Francone VP, Dupree JL, Rosenbluth J, Pfeiffer SE, Bansal R (2010) Myelin protein composition is altered in mice lacking either sulfated or both sulfated and non-sulfated galactolipids. J Neurochem 112:599–610

    PubMed  CAS  Google Scholar 

  171. Boggs JM, Gao W, Hirahara Y (2008) Myelin glycosphingolipids, galactosylceramide and sulfatide, participate in carbohydrate-carbohydrate interactions between apposed membranes and may form glycosynapses between oligodendrocyte and/or myelin membranes. Biochim Biophys Acta 1780:445–455

    PubMed  CAS  Google Scholar 

  172. Taylor CM, Coetzee T, Pfeiffer SE (2002) Detergent-insoluble glycosphingolipid/cholesterol microdomains of the myelin membrane. J Neurochem 81:993–1004

    PubMed  CAS  Google Scholar 

  173. Pan B, Fromholt SE, Hess EJ, Crawford TO, Griffin JW, Sheikh KA, Schnaar RL (2005) Myelin-associated glycoprotein and complementary axonal ligands, gangliosides, mediate axon stability in the CNS and PNS: neuropathology and behavioral deficits in single- and double-null mice. Exp Neurol 195:208–217

    PubMed  PubMed Central  CAS  Google Scholar 

  174. Schnaar RL, Lopez PH (2009) Myelin-associated glycoprotein and its axonal receptors. J Neurosci Res 87:3267–3276

    PubMed  PubMed Central  CAS  Google Scholar 

  175. McKerracher L, David S, Jackson DL, Kottis V, Dunn RJ, Braun PE (1994) Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13:805–811

    PubMed  CAS  Google Scholar 

  176. Mukhopadhyay G, Doherty P, Walsh FS, Crocker PR, Filbin MT (1994) A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13:757–767

    PubMed  CAS  Google Scholar 

  177. Yiu G, He Z (2006) Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7:617–627

    PubMed  PubMed Central  CAS  Google Scholar 

  178. Vinson M, Strijbos PJ, Rowles A, Facci L, Moore SE, Simmons DL, Walsh FS (2001) Myelin-associated glycoprotein interacts with ganglioside GT1b. A mechanism for neurite outgrowth inhibition. J Biol Chem 276:20280–20285

    PubMed  CAS  Google Scholar 

  179. Vyas AA, Patel HV, Fromholt SE, Heffer-Lauc M, Vyas KA, Dang J, Schachner M, Schnaar RL (2002) Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration. Proc Natl Acad Sci U S A 99:8412–8417

    PubMed  PubMed Central  CAS  Google Scholar 

  180. Domeniconi M, Cao Z, Spencer T, Sivasankaran R, Wang K, Nikulina E, Kimura N, Cai H, Deng K, Gao Y, He Z, Filbin M (2002) Myelin-associated glycoprotein interacts with the Nogo66 receptor to inhibit neurite outgrowth. Neuron 35:283–290

    PubMed  CAS  Google Scholar 

  181. Liu BP, Fournier A, GrandPre T, Strittmatter SM (2002) Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor. Science 297:1190–1193

    PubMed  CAS  Google Scholar 

  182. Cao Z, Gao Y, Deng K, Williams G, Doherty P, Walsh FS (2009) Receptors for myelin inhibitors: structures and therapeutic opportunities. Mol Cell Neurosci 43:1–14

    PubMed  CAS  Google Scholar 

  183. Venkatesh K, Chivatakarn O, Lee H, Joshi PS, Kantor DB, Newman BA, Mage R, Rader C, Giger RJ (2005) The Nogo-66 receptor homolog NgR2 is a sialic acid-dependent receptor selective for myelin-associated glycoprotein. J Neurosci 25:808–822

    PubMed  CAS  Google Scholar 

  184. Cao Z, Qiu J, Domeniconi M, Hou J, Bryson JB, Mellado W, Filbin MT (2007) The inhibition site on myelin-associated glycoprotein is within Ig-domain 5 and is distinct from the sialic acid binding site. J Neurosci 27:9146–9154

    PubMed  CAS  Google Scholar 

  185. Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11:688–699

    PubMed  CAS  Google Scholar 

  186. Aveldano MI, Bazan NG (1975) Rapid production of diacylglycerols enriched in arachidonate and stearate during early brain ischemia. J Neurochem 25:919–920

    PubMed  CAS  Google Scholar 

  187. Schengrund CL, Rosenberg A (1970) Intracellular location and properties of bovine brain sialidase. J Biol Chem 245:6196–6200

    PubMed  CAS  Google Scholar 

  188. Tettamanti G, Morgan IG, Gombos G, Vincendon G, Mandel P (1972) Sub-synaptosomal localization of brain particulate neuraminidose. Brain Res 47:515–518

    PubMed  CAS  Google Scholar 

  189. Tettamanti G, Preti A, Lombardo A, Suman T, Zambotti V (1975) Membrane-bound neuraminidase in the brain of different animals: behaviour of the enzyme on endogenous sialo derivatives and rationale for its assay. J Neurochem 25:451–456

    PubMed  CAS  Google Scholar 

  190. Tettamanti G, Preti A, Lombardo A, Bonali F, Zambotti V (1973) Parallelism of subcellular location of major particulate neuraminidase and gangliosides in rabbit brain cortex. Biochim Biophys Acta 306:466–477

    PubMed  CAS  Google Scholar 

  191. Preti A, Fiorilli A, Lombardo A, Caimi L, Tettamanti G (1980) Occurrence of sialyltransferase activity in the synaptosomal membranes prepared from calf brain cortex. J Neurochem 35:281–296

    PubMed  CAS  Google Scholar 

  192. Magini A, Polchi A, Urbanelli L, Cesselli D, Beltrami A, Tancini B, Emiliani C (2013) TFEB activation promotes the recruitment of lysosomal glycohydrolases beta-hexosaminidase and beta-galactosidase to the plasma membrane. Biochem Biophys Res Commun 440:251–257

    PubMed  CAS  Google Scholar 

  193. Aureli M, Masilamani AP, Illuzzi G, Loberto N, Scandroglio F, Prinetti A, Chigorno V, Sonnino S (2009) Activity of plasma membrane beta-galactosidase and beta-glucosidase. FEBS Lett 583:2469–2473

    PubMed  CAS  Google Scholar 

  194. Aureli M, Loberto N, Bassi R, Ferraretto A, Perego S, Lanteri P, Chigorno V, Sonnino S, Prinetti A (2012) Plasma membrane-associated glycohydrolases activation by extracellular acidification due to proton exchangers. Neurochem Res 37:1296–1307

    PubMed  CAS  Google Scholar 

  195. Crespo PM, Demichelis VT, Daniotti JL (2010) Neobiosynthesis of glycosphingolipids by plasma membrane-associated glycosyltransferases. J Biol Chem 285:29179–29190

    PubMed  PubMed Central  CAS  Google Scholar 

  196. Iwamori M, Iwamori Y (2005) Changes in the glycolipid composition and characteristic activation of GM3 synthase in the thymus of mouse after administration of dexamethasone. Glycoconj J 22:119–126

    PubMed  CAS  Google Scholar 

  197. Aureli M, Gritti A, Bassi R, Loberto N, Ricca A, Chigorno V, Prinetti A, Sonnino S (2012) Plasma membrane-associated glycohydrolases along differentiation of murine neural stem cells. Neurochem Res 37:1344–1354

    PubMed  CAS  Google Scholar 

  198. Prinetti A, Chigorno V, Mauri L, Loberto N, Sonnino S (2007) Modulation of cell functions by glycosphingolipid metabolic remodeling in the plasma membrane. J Neurochem 103(Suppl 1):113–125

    PubMed  CAS  Google Scholar 

  199. Cremesti AE, Goni FM, Kolesnick R (2002) Role of sphingomyelinase and ceramide in modulating rafts: do biophysical properties determine biologic outcome? FEBS Lett 531:47–53

    PubMed  CAS  Google Scholar 

  200. Horres CR, Hannun YA (2012) The roles of neutral sphingomyelinases in neurological pathologies. Neurochem Res 37:1137–1149

    PubMed  CAS  Google Scholar 

  201. Milhas D, Clarke CJ, Hannun YA (2010) Sphingomyelin metabolism at the plasma membrane: implications for bioactive sphingolipids. FEBS Lett 584:1887–1894

    PubMed  PubMed Central  CAS  Google Scholar 

  202. Valaperta R, Chigorno V, Basso L, Prinetti A, Bresciani R, Preti A, Miyagi T, Sonnino S (2006) Plasma membrane production of ceramide from ganglioside GM3 in human fibroblasts. FASEB J 20:1227–1229

    PubMed  CAS  Google Scholar 

  203. van Blitterswijk WJ, van der Luit AH, Veldman RJ, Verheij M, Borst J (2003) Ceramide: second messenger or modulator of membrane structure and dynamics? Biochem J 369:199–211

    PubMed  PubMed Central  Google Scholar 

  204. Stancevic B, Kolesnick R (2010) Ceramide-rich platforms in transmembrane signaling. FEBS Lett 584:1728–1740

    PubMed  CAS  Google Scholar 

  205. Grassme H, Riethmuller J, Gulbins E (2007) Biological aspects of ceramide-enriched membrane domains. Prog Lipid Res 46:161–170

    PubMed  CAS  Google Scholar 

  206. Mesmin B, Maxfield FR (2009) Intracellular sterol dynamics. Biochim Biophys Acta 1791:636–645

    PubMed  PubMed Central  CAS  Google Scholar 

  207. Lindblom G, Oradd G (2009) Lipid lateral diffusion and membrane heterogeneity. Biochim Biophys Acta 1788:234–244

    PubMed  CAS  Google Scholar 

  208. Wood WG, Igbavboa U, Muller WE, Eckert GP (2011) Cholesterol asymmetry in synaptic plasma membranes. J Neurochem 116:684–689

    PubMed  PubMed Central  CAS  Google Scholar 

  209. Ottico E, Prinetti A, Prioni S, Giannotta C, Basso L, Chigorno V, Sonnino S (2003) Dynamics of membrane lipid domains in neuronal cells differentiated in culture. J Lipid Res 44:2142–2151

    PubMed  CAS  Google Scholar 

  210. Burns MP, Igbavboa U, Wang L, Wood WG, Duff K (2006) Cholesterol distribution, not total levels, correlate with altered amyloid precursor protein processing in statin-treated mice. Neuromol Med 8:319–328

    CAS  Google Scholar 

  211. Williams JA, Batten SE, Harris M, Rockett BD, Shaikh SR, Stillwell W, Wassall SR (2012) Docosahexaenoic and Eicosapentaenoic Acids Segregate Differently between Raft and Nonraft Domains. Biophys J 103:228–237

    PubMed  PubMed Central  CAS  Google Scholar 

  212. Massey JB (2006) Membrane and protein interactions of oxysterols. Curr Opin Lipidol 17:296–301

    PubMed  CAS  Google Scholar 

  213. Rimmerman N, Bradshaw HB, Kozela E, Levy R, Juknat A, Vogel Z (2012) Compartmentalization of endocannabinoids into lipid rafts in a microglial cell line devoid of caveolin-1. Br J Pharmacol 165:2436–2449

    PubMed  PubMed Central  CAS  Google Scholar 

  214. Rimmerman N, Hughes HV, Bradshaw HB, Pazos MX, Mackie K, Prieto AL, Walker JM (2008) Compartmentalization of endocannabinoids into lipid rafts in a dorsal root ganglion cell line. Br J Pharmacol 153:380–389

    PubMed  PubMed Central  CAS  Google Scholar 

  215. Ledesma MD, Martin MG, Dotti CG (2012) Lipid changes in the aged brain: effect on synaptic function and neuronal survival. Prog Lipid Res 51:23–35

    PubMed  CAS  Google Scholar 

  216. Diaz ML, Fabelo N, Marin R (2012) Genotype-induced changes in biophysical properties of frontal cortex lipid raft from APP/PS1 transgenic mice. Front Physiol 3:454

    PubMed  PubMed Central  Google Scholar 

  217. Fabelo N, Martin V, Marin R, Santpere G, Aso E, Ferrer I, Diaz M (2012) Evidence for premature lipid raft aging in APP/PS1 double-transgenic mice, a model of familial Alzheimer disease. J Neuropathol Exp Neurol 71:868–881

    PubMed  CAS  Google Scholar 

  218. Marin R, Casanas V, Perez JA, Fabelo N, Fernandez C, Diaz M (2013) Oestrogens as modulators of neuronal signalosomes and brain lipid homeostasis related to protection against neurodegeneration. J Neuroendocrinol. doi:10.1111/jne.12068

    PubMed  Google Scholar 

  219. Sandhoff K, Harzer K (2013) Gangliosides and gangliosidoses: principles of molecular and metabolic pathogenesis. J Neurosci 33:10195–10208

    PubMed  CAS  Google Scholar 

  220. Vitner EB, Futerman AH (2013) Neuronal forms of Gaucher disease. Handb Exp Pharmacol (216):405–419

  221. Ledesma MD, Prinetti A, Sonnino S, Schuchman EH (2011) Brain pathology in Niemann Pick disease type A: insights from the acid sphingomyelinase knockout mice. J Neurochem 116:779–788

    PubMed  PubMed Central  CAS  Google Scholar 

  222. Reddy A, Caler EV, Andrews NW (2001) Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes. Cell 106:157–169

    PubMed  CAS  Google Scholar 

  223. Scandroglio F, Venkata JK, Loberto N, Prioni S, Schuchman EH, Chigorno V, Prinetti A, Sonnino S (2008) Lipid content of brain, brain membrane lipid domains, and neurons from acid sphingomyelinase deficient mice. J Neurochem 107:329–338

    PubMed  PubMed Central  CAS  Google Scholar 

  224. Buccinna B, Piccinini M, Prinetti A, Scandroglio F, Prioni S, Valsecchi M, Votta B, Grifoni S, Lupino E, Ramondetti C, Schuchman EH, Giordana MT, Sonnino S, Rinaudo MT (2009) Alterations of myelin-specific proteins and sphingolipids characterize the brains of acid sphingomyelinase-deficient mice, an animal model of Niemann-Pick disease type A. J Neurochem 109:105–115

    PubMed  CAS  Google Scholar 

  225. Rosenbaum AI, Maxfield FR (2011) Niemann-Pick type C disease: molecular mechanisms and potential therapeutic approaches. J Neurochem 116:789–795

    PubMed  PubMed Central  CAS  Google Scholar 

  226. Domon M, Nasir MN, Matar G, Pikula S, Besson F, Bandorowicz-Pikula J (2012) Annexins as organizers of cholesterol- and sphingomyelin-enriched membrane microdomains in Niemann-Pick type C disease. Cell Mol Life Sci 69:1773–1785

    PubMed  CAS  Google Scholar 

  227. Rebeck GW, Kindy M, LaDu MJ (2002) Apolipoprotein E and Alzheimer’s disease: the protective effects of ApoE2 and E3. J Alzheimers Dis 4:145–154

    PubMed  CAS  Google Scholar 

  228. Vance JE (2012) Dysregulation of cholesterol balance in the brain: contribution to neurodegenerative diseases. Dis Model Mech 5:746–755

    PubMed  PubMed Central  CAS  Google Scholar 

  229. Zlokovic BV (2013) Cerebrovascular effects of apolipoprotein E: implications for Alzheimer disease. JAMA Neurol 70:440–444

    PubMed  Google Scholar 

  230. Holtzman DM, Herz J, Bu G (2012) Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease. Cold Spring Harb Perspect Med 2:a006312

    PubMed  PubMed Central  Google Scholar 

  231. Vance JE, Campenot RB, Vance DE (2000) The synthesis and transport of lipids for axonal growth and nerve regeneration. Biochim Biophys Acta 1486:84–96

    PubMed  CAS  Google Scholar 

  232. Posse De Chaves EI, Vance DE, Campenot RB, Kiss RS, Vance JE (2000) Uptake of lipoproteins for axonal growth of sympathetic neurons. J Biol Chem 275:19883–19890

    PubMed  CAS  Google Scholar 

  233. Simons M, Lyons DA (2013) Axonal selection and myelin sheath generation in the central nervous system. Curr Opin Cell Biol 25:512–519

    PubMed  CAS  Google Scholar 

  234. Block RC, Dorsey ER, Beck CA, Brenna JT, Shoulson I (2010) Altered cholesterol and fatty acid metabolism in Huntington disease. J Clin Lipidol 4:17–23

    PubMed  PubMed Central  Google Scholar 

  235. Karasinska JM, Hayden MR (2011) Cholesterol metabolism in Huntington disease. Nat Rev Neurol 7:561–572

    PubMed  CAS  Google Scholar 

  236. Valenza M, Cattaneo E (2011) Emerging roles for cholesterol in Huntington’s disease. Trends Neurosci 34:474–486

    PubMed  CAS  Google Scholar 

  237. Higatsberger MR, Sperk G, Bernheimer H, Shannak KS, Hornykiewicz O (1981) Striatal ganglioside levels in the rat following kainic acid lesions: comparison with Huntington’s disease. Exp Brain Res 44:93–96

    PubMed  CAS  Google Scholar 

  238. Desplats PA, Denny CA, Kass KE, Gilmartin T, Head SR, Sutcliffe JG, Seyfried TN, Thomas EA (2007) Glycolipid and ganglioside metabolism imbalances in Huntington’s disease. Neurobiol Dis 27:265–277

    PubMed  PubMed Central  CAS  Google Scholar 

  239. Valencia A, Reeves PB, Sapp E, Li X, Alexander J, Kegel KB, Chase K, Aronin N, DiFiglia M (2010) Mutant huntingtin and glycogen synthase kinase 3-beta accumulate in neuronal lipid rafts of a presymptomatic knock-in mouse model of Huntington’s disease. J Neurosci Res 88:179–190

    PubMed  CAS  Google Scholar 

  240. Gudala K, Bansal D, Muthyala H (2013) Role of serum cholesterol in Parkinson’s disease: a meta-analysis of evidence. J Parkinsons Dis 3:363–370

    PubMed  CAS  Google Scholar 

  241. Kim KS, Kim JS, Park JY, Suh YH, Jou I, Joe EH, Park SM (2013) DJ-1 Associates with lipid rafts by palmitoylation and regulates lipid rafts-dependent endocytosis in astrocytes. Hum Mol Genet 22:4805–4817

    PubMed  CAS  Google Scholar 

  242. Fallon L, Moreau F, Croft BG, Labib N, Gu WJ, Fon EA (2002) Parkin and CASK/LIN-2 associate via a PDZ-mediated interaction and are co-localized in lipid rafts and postsynaptic densities in brain. J Biol Chem 277:486–491

    PubMed  CAS  Google Scholar 

  243. Silvestri L, Caputo V, Bellacchio E, Atorino L, Dallapiccola B, Valente EM, Casari G (2005) Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum Mol Genet 14:3477–3492

    PubMed  CAS  Google Scholar 

  244. Martinez Z, Zhu M, Han S, Fink AL (2007) GM1 specifically interacts with alpha-synuclein and inhibits fibrillation. Biochemistry 46:1868–1877

    PubMed  CAS  Google Scholar 

  245. Park JY, Kim KS, Lee SB, Ryu JS, Chung KC, Choo YK, Jou I, Kim J, Park SM (2009) On the mechanism of internalization of alpha-synuclein into microglia: roles of ganglioside GM1 and lipid raft. J Neurochem 110:400–411

    PubMed  CAS  Google Scholar 

  246. Fabelo N, Martin V, Santpere G, Marin R, Torrent L, Ferrer I, Diaz M (2011) Severe alterations in lipid composition of frontal cortex lipid rafts from Parkinson’s disease and incidental Parkinson’s disease. Mol Med 17:1107–1118

    PubMed  PubMed Central  CAS  Google Scholar 

  247. Silva T, Teixeira J, Remiao F, Borges F (2013) Alzheimer’s disease, cholesterol, and statins: the junctions of important metabolic pathways. Angew Chem Int Ed Engl 52:1110–1121

    PubMed  CAS  Google Scholar 

  248. Maulik M, Westaway D, Jhamandas JH, Kar S (2013) Role of cholesterol in APP metabolism and its significance in Alzheimer’s disease pathogenesis. Mol Neurobiol 47:37–63

    PubMed  CAS  Google Scholar 

  249. Han X, Rozen S, Boyle SH, Hellegers C, Cheng H, Burke JR, Welsh-Bohmer KA, Doraiswamy PM, Kaddurah-Daouk R (2011) Metabolomics in early Alzheimer’s disease: identification of altered plasma sphingolipidome using shotgun lipidomics. PLoS ONE 6:e21643

    PubMed  PubMed Central  CAS  Google Scholar 

  250. Cheng H, Wang M, Li JL, Cairns NJ, Han X (2013) Specific changes of sulfatide levels in individuals with pre-clinical Alzheimer’s disease: an early event in disease pathogenesis. J Neurochem 127:733–738

    PubMed  CAS  Google Scholar 

  251. Ariga T, McDonald MP, Yu RK (2008) Role of ganglioside metabolism in the pathogenesis of Alzheimer’s disease–a review. J Lipid Res 49:1157–1175

    PubMed  PubMed Central  CAS  Google Scholar 

  252. Svennerholm L, Gottfries CG (1994) Membrane lipids, selectively diminished in Alzheimer brains, suggest synapse loss as a primary event in early-onset form (type I) and demyelination in late-onset form (type II). J Neurochem 62:1039–1047

    PubMed  CAS  Google Scholar 

  253. Kalanj S, Kracun I, Rosner H, Cosovic C (1991) Regional distribution of brain gangliosides in Alzheimer’s disease. Neurol Croat 40:269–281

    PubMed  CAS  Google Scholar 

  254. Brooksbank BW, McGovern J (1989) Gangliosides in the brain in adult Down’s syndrome and Alzheimer’s disease. Mol Chem Neuropathol 11:143–156

    PubMed  CAS  Google Scholar 

  255. Kracun I, Rosner H, Drnovsek V, Heffer-Lauc M, Cosovic C, Lauc G (1991) Human brain gangliosides in development, aging and disease. Int J Dev Biol 35:289–295

    PubMed  CAS  Google Scholar 

  256. Kracun I, Kalanj S, Talan-Hranilovic J, Cosovic C (1992) Cortical distribution of gangliosides in Alzheimer’s disease. Neurochem Int 20:433–438

    PubMed  CAS  Google Scholar 

  257. Crino PB, Ullman MD, Vogt BA, Bird ED, Volicer L (1989) Brain gangliosides in dementia of the Alzheimer type. Arch Neurol 46:398–401

    PubMed  CAS  Google Scholar 

  258. Katsel P, Li C, Haroutunian V (2007) Gene expression alterations in the sphingolipid metabolism pathways during progression of dementia and Alzheimer’s disease: a shift toward ceramide accumulation at the earliest recognizable stages of Alzheimer’s disease? Neurochem Res 32:845–856

    PubMed  CAS  Google Scholar 

  259. Molander-Melin M, Blennow K, Bogdanovic N, Dellheden B, Mansson JE, Fredman P (2005) Structural membrane alterations in Alzheimer brains found to be associated with regional disease development; increased density of gangliosides GM1 and GM2 and loss of cholesterol in detergent-resistant membrane domains. J Neurochem 92:171–182

    PubMed  CAS  Google Scholar 

  260. Rushworth JV, Hooper NM (2010) Lipid rafts: linking Alzheimer’s amyloid-beta production, aggregation, and toxicity at neuronal membranes. Int J Alzheimers Dis 2011:603052

    PubMed  PubMed Central  Google Scholar 

  261. Hicks DA, Nalivaeva NN, Turner AJ (2012) Lipid rafts and Alzheimer’s disease: protein–lipid interactions and perturbation of signaling. Front Physiol 3:189

    PubMed  PubMed Central  CAS  Google Scholar 

  262. Costanzo M, Zurzolo C (2013) The cell biology of prion-like spread of protein aggregates: mechanisms and implication in neurodegeneration. Biochem J 452:1–17

    PubMed  CAS  Google Scholar 

  263. Fantini J, Yahi N (2013) The driving force of alpha-synuclein insertion and amyloid channel formation in the plasma membrane of neural cells: key role of ganglioside- and cholesterol-binding domains. Adv Exp Med Biol 991:15–26

    PubMed  CAS  Google Scholar 

  264. Teich AF, Arancio O (2012) Is the amyloid hypothesis of Alzheimer’s disease therapeutically relevant? Biochem J 446:165–177

    PubMed  PubMed Central  CAS  Google Scholar 

  265. Shvadchak VV, Falomir-Lockhart LJ, Yushchenko DA, Jovin TM (2011) Specificity and kinetics of alpha-synuclein binding to model membranes determined with fluorescent excited state intramolecular proton transfer (ESIPT) probe. J Biol Chem 286:13023–13032

    PubMed  PubMed Central  CAS  Google Scholar 

  266. Shvadchak VV, Yushchenko DA, Pievo R, Jovin TM (2011) The mode of alpha-synuclein binding to membranes depends on lipid composition and lipid to protein ratio. FEBS Lett 585:3513–3519

    PubMed  CAS  Google Scholar 

  267. Leftin A, Job C, Beyer K, Brown MF (2013) Solid-state (1)(3)C NMR reveals annealing of raft-like membranes containing cholesterol by the intrinsically disordered protein alpha-Synuclein. J Mol Biol 425:2973–2987

    PubMed  CAS  Google Scholar 

  268. Manna M, Mukhopadhyay C (2013) Binding, conformational transition and dimerization of amyloid-beta peptide on GM1-containing ternary membrane: insights from molecular dynamics simulation. PLoS ONE 8:e71308

    PubMed  PubMed Central  CAS  Google Scholar 

  269. Beel AJ, Sakakura M, Barrett PJ, Sanders CR (2010) Direct binding of cholesterol to the amyloid precursor protein: an important interaction in lipid-Alzheimer’s disease relationships? Biochim Biophys Acta 1801:975–982

    PubMed  PubMed Central  CAS  Google Scholar 

  270. Fantini J, Yahi N, Garmy N (2013) Cholesterol accelerates the binding of Alzheimer’s beta-amyloid peptide to ganglioside GM1 through a universal hydrogen-bond-dependent sterol tuning of glycolipid conformation. Front Physiol 4:120

    PubMed  PubMed Central  Google Scholar 

  271. Song Y, Hustedt EJ, Brandon S, Sanders CR (2013) Competition between homodimerization and cholesterol binding to the C99 domain of the amyloid precursor protein. Biochemistry 52:5051–5064

    PubMed  PubMed Central  CAS  Google Scholar 

  272. Barrett PJ, Song Y, Van Horn WD, Hustedt EJ, Schafer JM, Hadziselimovic A, Beel AJ, Sanders CR (2012) The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science 336:1168–1171

    PubMed  PubMed Central  CAS  Google Scholar 

  273. Minami SS, Hoe HS, Rebeck GW (2011) Fyn kinase regulates the association between amyloid precursor protein and Dab1 by promoting their localization to detergent-resistant membranes. J Neurochem 118:879–890

    PubMed  PubMed Central  CAS  Google Scholar 

  274. Nalivaeva NN, Turner AJ (2013) The amyloid precursor protein: a biochemical enigma in brain development, function and disease. FEBS Lett 587:2046–2054

    PubMed  CAS  Google Scholar 

  275. Muller UC, Zheng H (2012) Physiological functions of APP family proteins. Cold Spring Harb Perspect Med 2:a006288

    PubMed  PubMed Central  Google Scholar 

  276. Brouillet E, Trembleau A, Galanaud D, Volovitch M, Bouillot C, Valenza C, Prochiantz A, Allinquant B (1999) The amyloid precursor protein interacts with Go heterotrimeric protein within a cell compartment specialized in signal transduction. J Neurosci 19:1717–1727

    PubMed  CAS  Google Scholar 

  277. Ashall F, Goate AM (1994) Role of the beta-amyloid precursor protein in Alzheimer’s disease. Trends Biochem Sci 19:42–46

    PubMed  CAS  Google Scholar 

  278. Hartmann T, Kuchenbecker J, Grimm MO (2007) Alzheimer’s disease: the lipid connection. J Neurochem 103(Suppl 1):159–170

    PubMed  CAS  Google Scholar 

  279. Grimm MO, Grimm HS, Patzold AJ, Zinser EG, Halonen R, Duering M, Tschape JA, De Strooper B, Muller U, Shen J, Hartmann T (2005) Regulation of cholesterol and sphingomyelin metabolism by amyloid-beta and presenilin. Nat Cell Biol 7:1118–1123

    PubMed  CAS  Google Scholar 

  280. Grimm MO, Kuchenbecker J, Rothhaar TL, Grosgen S, Hundsdorfer B, Burg VK, Friess P, Muller U, Grimm HS, Riemenschneider M, Hartmann T (2011) Plasmalogen synthesis is regulated via alkyl-dihydroxyacetonephosphate-synthase by amyloid precursor protein processing and is affected in Alzheimer’s disease. J Neurochem 116:916–925

    PubMed  CAS  Google Scholar 

  281. Grimm MO, Grosgen S, Rothhaar TL, Burg VK, Hundsdorfer B, Haupenthal VJ, Friess P, Muller U, Fassbender K, Riemenschneider M, Grimm HS, Hartmann T (2011) Intracellular APP Domain Regulates Serine-Palmitoyl-CoA Transferase Expression and Is Affected in Alzheimer’s Disease. Int J Alzheimers Dis 2011:695413

    PubMed  PubMed Central  Google Scholar 

  282. Yanagisawa K, Odaka A, Suzuki N, Ihara Y (1995) GM1 ganglioside-bound amyloid beta-protein (A beta): a possible form of preamyloid in Alzheimer’s disease. Nat Med 1:1062–1066

    PubMed  CAS  Google Scholar 

  283. Kakio A, Nishimoto SI, Yanagisawa K, Kozutsumi Y, Matsuzaki K (2001) Cholesterol-dependent formation of GM1 ganglioside-bound amyloid beta-protein, an endogenous seed for Alzheimer amyloid. J Biol Chem 276:24985–24990

    PubMed  CAS  Google Scholar 

  284. Kim SI, Yi JS, Ko YG (2006) Amyloid beta oligomerization is induced by brain lipid rafts. J Cell Biochem 99:878–889

    PubMed  CAS  Google Scholar 

  285. Yanagisawa K, Fantini J, Chakrabartty A, Eckert A (2011) Abeta behavior on neuronal membranes: aggregation and toxicities. Int J Alzheimers Dis 2011:286536

    PubMed  PubMed Central  Google Scholar 

  286. Rushworth JV, Griffiths HH, Watt NT, Hooper NM (2013) Prion protein-mediated toxicity of amyloid-beta oligomers requires lipid rafts and the transmembrane LRP1. J Biol Chem 288:8935–8951

    PubMed  PubMed Central  CAS  Google Scholar 

  287. Blom K, Emmelot-Vonk MH, Koek HD (2013) The influence of vascular risk factors on cognitive decline in patients with dementia: a systematic review. Maturitas 76:113–117

    PubMed  Google Scholar 

  288. Wood WG, Igbavboa U, Eckert GP, Johnson-Anuna LN, Muller WE (2005) Is hypercholesterolemia a risk factor for Alzheimer’s disease? Mol Neurobiol 31:185–192

    PubMed  CAS  Google Scholar 

  289. Wood WG, Eckert GP, Igbavboa U, Muller WE (2010) Statins and neuroprotection: a prescription to move the field forward. Ann N Y Acad Sci 1199:69–76

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. S. Anderson for English editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Prinetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sonnino, S., Aureli, M., Grassi, S. et al. Lipid Rafts in Neurodegeneration and Neuroprotection. Mol Neurobiol 50, 130–148 (2014). https://doi.org/10.1007/s12035-013-8614-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8614-4

Keywords

Navigation