Skip to main content

Advertisement

Log in

MicroRNAs in Neuronal Communication

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are short nucleotides sequences that regulate the expression of genes in different eukaryotic cell types. A tremendous amount of knowledge on miRNAs has rapidly accumulated over the last few years, revealing the growing interest in this field of research. On the other hand, clarifying the physiological regulation of gene expression in the central nervous system is important for establishing a reference for comparison to the diseased state. It is well known that the fine tuning of neuronal networks relies on intricate molecular mechanisms, such as the adjustment of the synaptic transmission. As determined by recent studies, regulation of neuronal interactions by miRNAs has critical consequences in the development, adaptation to ambient demands, and degeneration of the nervous system. In contrast, activation of synaptic receptors triggers downstream signaling cascades that generate a vast array of effects, which includes the regulation of novel genes involved in the control of the miRNA life cycle. In this review, we have examined the hot topics on miRNA gene-regulatory activities in the broad field of neuronal communication-related processes. Furthermore, in addition to indicating the newly described effect of miRNAs on the regulation of specific neurotransmitter systems, we have pointed out how these systems affect the expression, transport, and stability of miRNAs. Moreover, we discuss newly described and under-investigation mechanisms involving the intercellular transfer of miRNAs, aided by exosomes and gap junctions. Thus, in the current review, we were able to highlight recent findings related to miRNAs that indisputably contributed towards the understanding of the nervous system in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Salta E, De Strooper B (2012) Non-coding RNAs with essential roles in neurodegenerative disorders. Lancet Neurol 11:189–200

    CAS  PubMed  Google Scholar 

  2. Batista PJ, Chang HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152:1298–1307

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Schonrock N, Gotz J (2012) Decoding the non-coding RNAs in Alzheimer’s disease. Cell Mol Life Sci 69:3543–3559

    CAS  PubMed  Google Scholar 

  4. Goldie BJ, Cairns MJ (2012) Post-transcriptional trafficking and regulation of neuronal gene expression. Mol Neurobiol 45:99–108

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Kai ZS, Pasquinelli AE (2010) MicroRNA assassins: factors that regulate the disappearance of miRNAs. Nat Struct Mol Biol 17:5–10

    CAS  PubMed  Google Scholar 

  6. Pillai RS, Bhattacharyya SN, Filipowicz W (2007) Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol 17:118–126

    CAS  PubMed  Google Scholar 

  7. Majer A, Booth SA (2010) Computational methodologies for studying non-coding RNAs relevant to central nervous system function and dysfunction. Brain Res 1338:131–145

    CAS  PubMed  Google Scholar 

  8. Zheng K, Li H, Zhu Y, Zhu Q, Qiu M (2010) MicroRNAs are essential for the developmental switch from neurogenesis to gliogenesis in the developing spinal cord. J Neurosci 30:8245–8250

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Davis TH, Cuellar TL, Koch SM, Barker AJ, Harfe BD et al (2008) Conditional loss of dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J Neurosci 28:4322–4330

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Perruisseau-Carrier C, Jurga M, Forraz N, McGuckin CP (2011) miRNAs stem cell reprogramming for neuronal induction and differentiation. Mol Neurobiol 43:215–227

    CAS  PubMed  Google Scholar 

  11. Krol J, Busskamp V, Markiewicz I, Stadler MB, Ribi S et al (2010) Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs. Cell 141:618–631

    CAS  PubMed  Google Scholar 

  12. Bhalala OG, Srikanth M, Kessler JA (2013) The emerging roles of microRNAs in CNS injuries. Nat Rev Neurol 9:328–339

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Thounaojam MC, Kaushik DK, Basu A (2013) MicroRNAs in the brain: it's regulatory role in neuroinflammation. Mol Neurobiol 47:1034–1044

    CAS  PubMed  Google Scholar 

  14. Mouillet-Richard S, Baudry A, Launay JM, Kellermann O (2012) MicroRNAs and depression. Neurobiol Dis 46:272–278

    CAS  PubMed  Google Scholar 

  15. Malan-Muller S, Hemmings SM, Seedat S (2013) Big effects of small RNAs: a review of microRNAs in anxiety. Mol Neurobiol 47:726–739

    PubMed Central  PubMed  Google Scholar 

  16. Inukai S, Slack F (2013) MicroRNAs and the genetic network in aging. J Mol Biol 425:3601–3608

    CAS  PubMed  Google Scholar 

  17. Rao YS, Mott NN, Wang Y, Chung WC, Pak TR (2013) MicroRNAs in the aging female brain: a putative mechanism for age-specific estrogen effects. Endocrinol

  18. Angerstein C, Hecker M, Paap BK, Koczan D, Thamilarasan M et al (2012) Integration of MicroRNA databases to study MicroRNAs associated with multiple sclerosis. Mol Neurobiol 45:520–535

    CAS  PubMed  Google Scholar 

  19. Bian S, Sun T (2011) Functions of noncoding RNAs in neural development and neurological diseases. Mol Neurobiol 44:359–373

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610

    CAS  PubMed  Google Scholar 

  21. Lee Y, Kim M, Han J, Yeom KH, Lee S et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Han J, Lee Y, Yeom KH, Kim YK, Jin H et al (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18:3016–3027

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Starega-Roslan J, Koscianska E, Kozlowski P, Krzyzosiak WJ (2011) The role of the precursor structure in the biogenesis of microRNA. Cell Mol Life Sci 68:2859–2871

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ et al (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15:2654–2659

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123:631–640

    CAS  PubMed  Google Scholar 

  27. Burroughs AM, Ando Y, de Hoon MJ, Tomaru Y, Nishibu T et al (2010) A comprehensive survey of 3′ animal miRNA modification events and a possible role for 3′ adenylation in modulating miRNA targeting effectiveness. Genome Res 20:1398–1410

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B et al (2004) The microprocessor complex mediates the genesis of microRNAs. Nature 432:235–240

    CAS  PubMed  Google Scholar 

  29. Hsu R, Schofield CM, Dela Cruz CG, Jones-Davis DM, Blelloch R et al (2012) Loss of microRNAs in pyramidal neurons leads to specific changes in inhibitory synaptic transmission in the prefrontal cortex. Mol Cell Neurosci 50:283–292

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Chiu CS, Brickley S, Jensen K, Southwell A, McKinney S et al (2005) GABA transporter deficiency causes tremor, ataxia, nervousness, and increased GABA-induced tonic conductance in cerebellum. J Neurosci 25:3234–3245

    CAS  PubMed  Google Scholar 

  31. Costain G, Bassett AS (2012) Clinical applications of schizophrenia genetics: genetic diagnosis, risk, and counseling in the molecular era. Appl Clin Genet 5:1–18

    PubMed Central  PubMed  Google Scholar 

  32. Fenelon K, Mukai J, Xu B, Hsu PK, Drew LJ et al (2011) Deficiency of Dgcr8, a gene disrupted by the 22q11.2 microdeletion, results in altered short-term plasticity in the prefrontal cortex. Proc Natl Acad Sci U S A 108:4447–4452

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Schofield CM, Hsu R, Barker AJ, Gertz CC, Blelloch R et al (2011) Monoallelic deletion of the microRNA biogenesis gene Dgcr8 produces deficits in the development of excitatory synaptic transmission in the prefrontal cortex. Neural Dev 6:11

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Curtis HJ, Sibley CR, Wood MJ (2012) Mirtrons, an emerging class of atypical miRNA. Wiley Interdiscip Rev RNA 3:617–632

    CAS  PubMed  Google Scholar 

  35. Maurin T, Cazalla D, Yang S Jr, Bortolamiol-Becet D, Lai EC (2012) RNase III-independent microRNA biogenesis in mammalian cells. RNA 18:2166–2173

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Lugli G, Torvik VI, Larson J, Smalheiser NR (2008) Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain. J Neurochem 106:650–661

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Lugli G, Larson J, Demars MP, Smalheiser NR (2012) Primary microRNA precursor transcripts are localized at post-synaptic densities in adult mouse forebrain. J Neurochem 123:459–466

    CAS  PubMed  Google Scholar 

  38. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H et al (2003) Dicer is essential for mouse development. Nat Genet 35:215–217

    CAS  PubMed  Google Scholar 

  39. Babiarz JE, Hsu R, Melton C, Thomas M, Ullian EM et al (2011) A role for noncanonical microRNAs in the mammalian brain revealed by phenotypic differences in Dgcr8 versus Dicer1 knockouts and small RNA sequencing. RNA 17:1489–1501

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Li Z, He X, Feng J (2012) Dicer is essential for neuronal polarity. Int J Dev Neurosci 30:607–611

    CAS  PubMed  Google Scholar 

  41. Barbato C, Ciotti MT, Serafino A, Calissano P, Cogoni C (2007) Dicer expression and localization in post-mitotic neurons. Brain Res 1175:17–27

    CAS  PubMed  Google Scholar 

  42. Campenot RB, Soin J, Blacker M, Lund K, Eng H et al (2003) Block of slow axonal transport and axonal growth by brefeldin A in compartmented cultures of rat sympathetic neurons. Neuropharmacology 44:1107–1117

    CAS  PubMed  Google Scholar 

  43. Cuellar TL, Davis TH, Nelson PT, Loeb GB, Harfe BD et al (2008) Dicer loss in striatal neurons produces behavioral and neuroanatomical phenotypes in the absence of neurodegeneration. Proc Natl Acad Sci U S A 105:5614–5619

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Damiani D, Alexander JJ, O’Rourke JR, McManus M, Jadhav AP et al (2008) Dicer inactivation leads to progressive functional and structural degeneration of the mouse retina. J Neurosci 28:4878–4887

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV et al (2007) A microRNA feedback circuit in midbrain dopamine neurons. Science 317:1220–1224

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Schaefer A, O’Carroll D, Tan CL, Hillman D, Sugimori M et al (2007) Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med 204:1553–1558

    CAS  PubMed Central  PubMed  Google Scholar 

  47. McKiernan RC, Jimenez-Mateos EM, Bray I, Engel T, Brennan GP et al (2012) Reduced mature microRNA levels in association with dicer loss in human temporal lobe epilepsy with hippocampal sclerosis. PLoS One 7:e35921

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Konopka W, Kiryk A, Novak M, Herwerth M, Parkitna JR et al (2010) MicroRNA loss enhances learning and memory in mice. J Neurosci 30:14835–14842

    CAS  PubMed  Google Scholar 

  49. Hirvonen J, Hietala J (2011) Dysfunctional brain networks and genetic risk for schizophrenia: specific neurotransmitter systems. CNS Neurosci Ther 17:89–96

    PubMed  Google Scholar 

  50. Santarelli DM, Beveridge NJ, Tooney PA, Cairns MJ (2011) Upregulation of dicer and microRNA expression in the dorsolateral prefrontal cortex Brodmann area 46 in schizophrenia. Biol Psychiatry 69:180–187

    CAS  PubMed  Google Scholar 

  51. Tan GS, Garchow BG, Liu X, Metzler D, Kiriakidou M (2011) Clarifying mammalian RISC assembly in vitro. BMC Mol Biol 12:19

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Rand TA, Ginalski K, Grishin NV, Wang X (2004) Biochemical identification of Argonaute 2 as the sole protein required for RNA-induced silencing complex activity. Proc Natl Acad Sci U S A 101:14385–14389

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Lugli G, Larson J, Martone ME, Jones Y, Smalheiser NR (2005) Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner. J Neurochem 94:896–905

    CAS  PubMed  Google Scholar 

  54. Schaefer A, Im HI, Veno MT, Fowler CD, Min A et al (2010) Argonaute 2 in dopamine 2 receptor-expressing neurons regulates cocaine addiction. J Exp Med 207:1843–1851

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Garcia-Perez D, Saez-Belmonte F, Laorden ML, Nunez C, Milanes MV (2013) Morphine administration modulates expression of Argonaute 2 and dopamine-related transcription factors involved in midbrain dopaminergic neurons function. Br J Pharmacol 168:1889–1901

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Parker R, Sheth U (2007) P bodies and the control of mRNA translation and degradation. Mol Cell 25:635–646

    CAS  PubMed  Google Scholar 

  57. Cougot N, Bhattacharyya SN, Tapia-Arancibia L, Bordonne R, Filipowicz W et al (2008) Dendrites of mammalian neurons contain specialized P-body-like structures that respond to neuronal activation. J Neurosci 28:13793–13804

    CAS  PubMed  Google Scholar 

  58. Oh JY, Kwon A, Jo A, Kim H, Goo YS et al (2013) Activity-dependent synaptic localization of processing bodies and their role in dendritic structural plasticity. J Cell Sci 126:2114–2123

    CAS  PubMed  Google Scholar 

  59. Yates LA, Norbury CJ, Gilbert RJ (2013) The long and short of microRNA. Cell 153:516–519

    CAS  PubMed  Google Scholar 

  60. Ragan C, Zuker M, Ragan MA (2011) Quantitative prediction of miRNA–mRNA interaction based on equilibrium concentrations. PLoS Comput Biol 7:e1001090

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Katoh T, Sakaguchi Y, Miyauchi K, Suzuki T, Kashiwabara S et al (2009) Selective stabilization of mammalian microRNAs by 3′ adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes Dev 23:433–438

    CAS  PubMed Central  PubMed  Google Scholar 

  62. de Sousa E, Walter LT, Higa GS, Casado OA, Kihara AH (2013) Developmental and functional expression of miRNA-stability related genes in the nervous system. PLoS One 8:e56908

    PubMed Central  PubMed  Google Scholar 

  63. Kinjo ER, Higa GS, de Sousa E, Casado OA, Damico MV, et al. (2013) A possible new mechanism for the control of miRNA expression in neurons. Exp Neurol

  64. Sundermeier TR, Palczewski K (2012) The physiological impact of microRNA gene regulation in the retina. Cell Mol Life Sci 69:2739–2750

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Parsons RG, Ressler KJ (2013) Implications of memory modulation for post-traumatic stress and fear disorders. Nat Neurosci 16:146–153

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Pare D, Duvarci S (2012) Amygdala microcircuits mediating fear expression and extinction. Curr Opin Neurobiol 22:717–723

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Griggs EM, Young EJ, Rumbaugh G, Miller CA (2013) MicroRNA-182 regulates amygdala-dependent memory formation. J Neurosci 33:1734–1740

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Belmonte MA, Santos MF, Kihara AH, Yan CY, Hamassaki DE (2006) Light-induced photoreceptor degeneration in the mouse involves activation of the small GTPase Rac1. Invest Ophthalmol Vis Sci 47:1193–1200

    PubMed  Google Scholar 

  69. Watabe-Uchida M, Govek EE, Van Aelst L (2006) Regulators of Rho GTPases in neuronal development. J Neurosci 26:10633–10635

    CAS  PubMed  Google Scholar 

  70. Diana G, Valentini G, Travaglione S, Falzano L, Pieri M et al (2007) Enhancement of learning and memory after activation of cerebral Rho GTPases. Proc Natl Acad Sci U S A 104:636–641

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Mercer TR, Dinger ME, Mariani J, Kosik KS, Mehler MF et al (2008) Noncoding RNAs in long-term memory formation. Neuroscientist 14:434–445

    CAS  PubMed  Google Scholar 

  72. Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T et al (2005) A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci U S A 102:16426–16431

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Lambert TJ, Storm DR, Sullivan JM (2010) MicroRNA132 modulates short-term synaptic plasticity but not basal release probability in hippocampal neurons. PLoS One 5:e15182

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Pathania M, Torres-Reveron J, Yan L, Kimura T, Lin TV et al (2012) miR-132 enhances dendritic morphogenesis, spine density, synaptic integration, and survival of newborn olfactory bulb neurons. PLoS One 7:e38174

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Olde Loohuis NF, Kos A, Martens GJ, Van Bokhoven H, Nadif Kasri N et al (2012) MicroRNA networks direct neuronal development and plasticity. Cell Mol Life Sci 69:89–102

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Korb E, Finkbeiner S (2011) Arc in synaptic plasticity: from gene to behavior. Trends Neurosci 34:591–598

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Shepherd JD, Bear MF (2011) New views of Arc, a master regulator of synaptic plasticity. Nat Neurosci 14:279–284

    CAS  PubMed  Google Scholar 

  78. Wibrand K, Pai B, Siripornmongcolchai T, Bittins M, Berentsen B et al (2012) MicroRNA regulation of the synaptic plasticity-related gene Arc. PLoS One 7:e41688

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Wayman GA, Davare M, Ando H, Fortin D, Varlamova O et al (2008) An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci U S A 105:9093–9098

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Impey S, Davare M, Lesiak A, Fortin D, Ando H et al (2010) An activity-induced microRNA controls dendritic spine formation by regulating Rac1-PAK signaling. Mol Cell Neurosci 43:146–156

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Wibrand K, Panja D, Tiron A, Ofte ML, Skaftnesmo KO et al (2010) Differential regulation of mature and precursor microRNA expression by NMDA and metabotropic glutamate receptor activation during LTP in the adult dentate gyrus in vivo. Eur J Neurosci 31:636–645

    PubMed Central  PubMed  Google Scholar 

  83. Wu J, Rowan MJ, Anwyl R (2004) Synaptically stimulated induction of group I metabotropic glutamate receptor-dependent long-term depression and depotentiation is inhibited by prior activation of metabotropic glutamate receptors and protein kinase C. Neuroscience 123:507–514

    CAS  PubMed  Google Scholar 

  84. Abraham WC (2008) Metaplasticity: tuning synapses and networks for plasticity. Nat Rev Neurosci 9:387

    CAS  PubMed  Google Scholar 

  85. Plant K, Pelkey KA, Bortolotto ZA, Morita D, Terashima A et al (2006) Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation. Nat Neurosci 9:602–604

    CAS  PubMed  Google Scholar 

  86. Guire ES, Oh MC, Soderling TR, Derkach VA (2008) Recruitment of calcium-permeable AMPA receptors during synaptic potentiation is regulated by CaM-kinase I. J Neurosci 28:6000–6009

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Pascoli V, Turiault M, Luscher C (2012) Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour. Nature 481:71–75

    CAS  Google Scholar 

  88. Britt JP, Bonci A (2013) Optogenetic interrogations of the neural circuits underlying addiction. Curr Opin Neurobiol

  89. Saba R, Storchel PH, Aksoy-Aksel A, Kepura F, Lippi G et al (2012) Dopamine-regulated microRNA MiR-181a controls GluA2 surface expression in hippocampal neurons. Mol Cell Biol 32:619–632

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Garcia-Alias G, Petrosyan HA, Schnell L, Horner PJ, Bowers WJ et al (2011) Chondroitinase ABC combined with neurotrophin NT-3 secretion and NR2D expression promotes axonal plasticity and functional recovery in rats with lateral hemisection of the spinal cord. J Neurosci 31:17788–17799

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Tong L, Prieto GA, Kramar EA, Smith ED, Cribbs DH et al (2012) Brain-derived neurotrophic factor-dependent synaptic plasticity is suppressed by interleukin-1beta via p38 mitogen-activated protein kinase. J Neurosci 32:17714–17724

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Iki J, Inoue A, Bito H, Okabe S (2005) Bi-directional regulation of postsynaptic cortactin distribution by BDNF and NMDA receptor activity. Eur J Neurosci 22:2985–2994

    PubMed  Google Scholar 

  93. Ji Y, Lu Y, Yang F, Shen W, Tang TT et al (2010) Acute and gradual increases in BDNF concentration elicit distinct signaling and functions in neurons. Nat Neurosci 13:302–309

    CAS  PubMed  Google Scholar 

  94. Kawashima H, Numakawa T, Kumamaru E, Adachi N, Mizuno H et al (2010) Glucocorticoid attenuates brain-derived neurotrophic factor-dependent upregulation of glutamate receptors via the suppression of microRNA-132 expression. Neuroscience 165:1301–1311

    CAS  PubMed  Google Scholar 

  95. Barria A, Malinow R (2002) Subunit-specific NMDA receptor trafficking to synapses. Neuron 35:345–353

    CAS  PubMed  Google Scholar 

  96. Budreck EC, Kwon OB, Jung JH, Baudouin S, Thommen A et al (2013) Neuroligin-1 controls synaptic abundance of NMDA-type glutamate receptors through extracellular coupling. Proc Natl Acad Sci U S A 110:725–730

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Karr J, Vagin V, Chen K, Ganesan S, Olenkina O et al (2009) Regulation of glutamate receptor subunit availability by microRNAs. J Cell Biol 185:685–697

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Majer A, Medina SJ, Niu Y, Abrenica B, Manguiat KJ et al (2012) Early mechanisms of pathobiology are revealed by transcriptional temporal dynamics in hippocampal CA1 neurons of prion infected mice. PLoS Pathog 8:e1003002

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Chandrasekar V, Dreyer JL (2011) Regulation of MiR-124, Let-7d, and MiR-181a in the accumbens affects the expression, extinction, and reinstatement of cocaine-induced conditioned place preference. Neuropsychopharmacology 36:1149–1164

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Beveridge NJ, Tooney PA, Carroll AP, Gardiner E, Bowden N et al (2008) Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Hum Mol Genet 17:1156–1168

    CAS  PubMed  Google Scholar 

  101. Harraz MM, Eacker SM, Wang X, Dawson TM, Dawson VL (2012) MicroRNA-223 is neuroprotective by targeting glutamate receptors. Proc Natl Acad Sci U S A 109:18962–18967

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Edbauer D, Neilson JR, Foster KA, Wang CF, Seeburg DP et al (2010) Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65:373–384

    CAS  PubMed  Google Scholar 

  103. Dutta R, Chomyk AM, Chang A, Ribaudo MV, Deckard SA et al (2013) Hippocampal demyelination and memory dysfunction are associated with increased levels of the neuronal microRNA miR-124 and reduced AMPA receptors. Ann Neurol 73:637–645

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Kocerha J, Faghihi MA, Lopez-Toledano MA, Huang J, Ramsey AJ et al (2009) MicroRNA-219 modulates NMDA receptor-mediated neurobehavioral dysfunction. Proc Natl Acad Sci U S A 106:3507–3512

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Chandrasekar V, Dreyer JL (2009) MicroRNAs miR-124, let-7d and miR-181a regulate cocaine-induced plasticity. Mol Cell Neurosci 42:350–362

    CAS  PubMed  Google Scholar 

  106. Zhou R, Yuan P, Wang Y, Hunsberger JG, Elkahloun A et al (2009) Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers. Neuropsychopharmacology 34:1395–1405

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Morel L, Regan M, Higashimori H, Ng SK, Esau C et al (2013) Neuronal exosomal miRNA-dependent translational regulation of astroglial glutamate transporter GLT1. J Biol Chem 288:7105–7116

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Colin A, Faideau M, Dufour N, Auregan G, Hassig R et al (2009) Engineered lentiviral vector targeting astrocytes in vivo. Glia 57:667–679

    PubMed  Google Scholar 

  109. Zhao C, Huang C, Weng T, Xiao X, Ma H et al (2012) Computational prediction of microRNAs targeting GABA receptors and experimental verification of miR-181, miR-216 and miR-203 targets in GABA-a receptor. BMC Res Notes 5:91

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Sengupta JN, Pochiraju S, Kannampalli P, Bruckert M, Addya S et al (2013) MicroRNA-mediated GABA Aalpha-1 receptor subunit down-regulation in adult spinal cord following neonatal cystitis-induced chronic visceral pain in rats. Pain 154:59–70

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Barbato C, Ruberti F, Pieri M, Vilardo E, Costanzo M et al (2010) MicroRNA-92 modulates K(+) Cl(−) co-transporter KCC2 expression in cerebellar granule neurons. J Neurochem 113:591–600

    CAS  PubMed  Google Scholar 

  112. Im YB, Jee MK, Choi JI, Cho HT, Kwon OH et al (2012) Molecular targeting of NOX4 for neuropathic pain after traumatic injury of the spinal cord. Cell Death Dis 3:e426

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Horvath L, van Marion I, Tai K, Nielsen TT, Lundberg C (2011) Knockdown of GAD67 protein levels normalizes neuronal activity in a rat model of Parkinson’s disease. J Gene Med 13:188–197

    CAS  PubMed  Google Scholar 

  114. Huang W, Li MD (2009) Differential allelic expression of dopamine D1 receptor gene (DRD1) is modulated by microRNA miR-504. Biol Psychiatry 65:702–705

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Tobon KE, Chang D, Kuzhikandathil EV (2012) MicroRNA 142-3p mediates post-transcriptional regulation of D1 dopamine receptor expression. PLoS One 7:e49288

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Li J, Liu X, Qin S, Guan Y, Liu Y, et al. (2013) MicroRNA expression profile and functional analysis reveal that miR-382 is a critical novel gene of alcohol addiction. EMBO Mol Med

  117. Barreto-Valer K, Lopez-Bellido R, Macho Sanchez-Simon F, Rodriguez RE (2012) Modulation by cocaine of dopamine receptors through miRNA-133b in zebrafish embryos. PLoS One 7:e52701

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Sanchez-Simon FM, Zhang XX, Loh HH, Law PY, Rodriguez RE (2010) Morphine regulates dopaminergic neuron differentiation via miR-133b. Mol Pharmacol 78:935–942

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Kim AH, Reimers M, Maher B, Williamson V, McMichael O et al (2010) MicroRNA expression profiling in the prefrontal cortex of individuals affected with schizophrenia and bipolar disorders. Schizophr Res 124:183–191

    PubMed  Google Scholar 

  120. Yang D, Li T, Wang Y, Tang Y, Cui H et al (2012) miR-132 regulates the differentiation of dopamine neurons by directly targeting Nurr1 expression. J Cell Sci 125:1673–1682

    CAS  PubMed  Google Scholar 

  121. Wu L, Zhao Q, Zhu X, Peng M, Jia C et al (2010) A novel function of microRNA let-7d in regulation of galectin-3 expression in attention deficit hyperactivity disorder rat brain. Brain Pathol 20:1042–1054

    CAS  PubMed  Google Scholar 

  122. Scarr E, Craig JM, Cairns MJ, Seo MS, Galati JC et al (2013) Decreased cortical muscarinic M1 receptors in schizophrenia are associated with changes in gene promoter methylation, mRNA and gene targeting microRNA. Transl Psychiatry 3:e230

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Creson TK, Austin DR, Shaltiel G, McCammon J, Wess J et al (2011) Lithium treatment attenuates muscarinic M(1) receptor dysfunction. Bipolar Disord 13:238–249

    CAS  PubMed  Google Scholar 

  124. Simon DJ, Madison JM, Conery AL, Thompson-Peer KL, Soskis M et al (2008) The microRNA miR-1 regulates a MEF-2-dependent retrograde signal at neuromuscular junctions. Cell 133:903–915

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Shaked I, Meerson A, Wolf Y, Avni R, Greenberg D et al (2009) MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase. Immunity 31:965–973

    CAS  PubMed  Google Scholar 

  126. Shaltiel G, Hanan M, Wolf Y, Barbash S, Kovalev E et al (2013) Hippocampal microRNA-132 mediates stress-inducible cognitive deficits through its acetylcholinesterase target. Brain Struct Funct 218:59–72

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Valiyaveettil M, Alamneh YA, Miller SA, Hammamieh R, Arun P et al (2013) Modulation of cholinergic pathways and inflammatory mediators in blast-induced traumatic brain injury. Chem Biol Interact 203:371–375

    CAS  PubMed  Google Scholar 

  128. Meerson A, Cacheaux L, Goosens KA, Sapolsky RM, Soreq H et al (2010) Changes in brain microRNAs contribute to cholinergic stress reactions. J Mol Neurosci 40:47–55

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Jensen KP, Covault J, Conner TS, Tennen H, Kranzler HR et al (2009) A common polymorphism in serotonin receptor 1B mRNA moderates regulation by miR-96 and associates with aggressive human behaviors. Mol Psychiatry 14:381–389

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Beveridge NJ, Gardiner E, Carroll AP, Tooney PA, Cairns MJ (2010) Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol Psychiatry 15:1176–1189

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Muinos-Gimeno M, Espinosa-Parrilla Y, Guidi M, Kagerbauer B, Sipila T et al (2011) Human microRNAs miR-22, miR-138-2, miR-148a, and miR-488 are associated with panic disorder and regulate several anxiety candidate genes and related pathways. Biol Psychiatry 69:526–533

    CAS  PubMed  Google Scholar 

  132. Guo AY, Sun J, Jia P, Zhao Z (2010) A novel microRNA and transcription factor mediated regulatory network in schizophrenia. BMC Syst Biol 4:10

    PubMed Central  PubMed  Google Scholar 

  133. Baudry A, Mouillet-Richard S, Schneider B, Launay JM, Kellermann O (2010) miR-16 targets the serotonin transporter: a new facet for adaptive responses to antidepressants. Science 329:1537–1541

    CAS  PubMed  Google Scholar 

  134. Benmansour S, Owens WA, Cecchi M, Morilak DA, Frazer A (2002) Serotonin clearance in vivo is altered to a greater extent by antidepressant-induced downregulation of the serotonin transporter than by acute blockade of this transporter. J Neurosci 22:6766–6772

    CAS  PubMed  Google Scholar 

  135. Launay JM, Mouillet-Richard S, Baudry A, Pietri M, Kellermann O (2011) Raphe-mediated signals control the hippocampal response to SRI antidepressants via miR-16. Transl Psychiatry 1:e56

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Sigel E, Steinmann ME (2012) Structure, function, and modulation of GABA(A) receptors. J Biol Chem 287:40224–40231

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Mellios N, Huang HS, Baker SP, Galdzicka M, Ginns E et al (2009) Molecular determinants of dysregulated GABAergic gene expression in the prefrontal cortex of subjects with schizophrenia. Biol Psychiatry 65:1006–1014

    CAS  PubMed  Google Scholar 

  138. Hashimoto T, Bergen SE, Nguyen QL, Xu B, Monteggia LM et al (2005) Relationship of brain-derived neurotrophic factor and its receptor TrkB to altered inhibitory prefrontal circuitry in schizophrenia. J Neurosci 25:372–383

    CAS  PubMed  Google Scholar 

  139. Munoz A, Mendez P, DeFelipe J, Alvarez-Leefmans FJ (2007) Cation-chloride cotransporters and GABA-ergic innervation in the human epileptic hippocampus. Epilepsia 48:663–673

    CAS  PubMed  Google Scholar 

  140. Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934

    CAS  PubMed  Google Scholar 

  141. Heyer MP, Pani AK, Smeyne RJ, Kenny PJ, Feng G (2012) Normal midbrain dopaminergic neuron development and function in miR-133b mutant mice. J Neurosci 32:10887–10894

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Li Y, Li C, Chen Z, He J, Tao Z et al (2012) A microRNA, mir133b, suppresses melanopsin expression mediated by failure dopaminergic amacrine cells in RCS rats. Cell Signal 24:685–698

    CAS  PubMed  Google Scholar 

  143. O’Connor RM, Grenham S, Dinan TG, Cryan JF (2013) MicroRNAs as novel antidepressant targets: converging effects of ketamine and electroconvulsive shock therapy in the rat hippocampus. Int J Neuropsychopharmacol: 1–8

  144. Hunsberger JG, Fessler EB, Chibane FL, Leng Y, Maric D et al (2013) Mood stabilizer-regulated miRNAs in neuropsychiatric and neurodegenerative diseases: identifying associations and functions. Am J Transl Res 5:450–464

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Kye MJ, Neveu P, Lee YS, Zhou M, Steen JA et al (2011) NMDA mediated contextual conditioning changes miRNA expression. PLoS One 6:e24682

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Balaraman S, Winzer-Serhan UH, Miranda RC (2012) Opposing actions of ethanol and nicotine on microRNAs are mediated by nicotinic acetylcholine receptors in fetal cerebral cortical-derived neural progenitor cells. Alcohol Clin Exp Res 36:1669–1677

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Rajasethupathy P, Fiumara F, Sheridan R, Betel D, Puthanveettil SV et al (2009) Characterization of small RNAs in Aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB. Neuron 63:803–817

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Ofek K, Soreq H (2013) Cholinergic involvement and manipulation approaches in multiple system disorders. Chem Biol Interact 203:113–119

    CAS  PubMed  Google Scholar 

  149. Soreq H, Wolf Y (2011) NeurimmiRs: microRNAs in the neuroimmune interface. Trends Mol Med 17:548–555

    CAS  PubMed  Google Scholar 

  150. Hanin G, Soreq H (2011) Cholinesterase-targeting microRNAs identified in silico affect specific biological processes. Front Mol Neurosci 4:28

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Yazici H, Zipprich J, Peng T, Akisik EZ, Tigli H et al (2009) Investigation of the miR16-1 (C > T) + 7 substitution in seven different types of cancer from three ethnic groups. J Oncol 2009:827532

    PubMed Central  PubMed  Google Scholar 

  152. Descarries L, Riad M (2012) Effects of the antidepressant fluoxetine on the subcellular localization of 5-HT1A receptors and SERT. Philos Trans R Soc Lond B Biol Sci 367:2416–2425

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Paschou M, Paraskevopoulou MD, Vlachos IS, Koukouraki P, Hatzigeorgiou AG et al (2012) miRNA regulons associated with synaptic function. PLoS One 7:e46189

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Wells DG (2012) mRNA translation: regulating an out of soma experience. Curr Opin Cell Biol 24:554–557

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME et al (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439:283–289

    CAS  PubMed  Google Scholar 

  156. Park CS, Tang SJ (2009) Regulation of microRNA expression by induction of bidirectional synaptic plasticity. J Mol Neurosci 38:50–56

    CAS  PubMed  Google Scholar 

  157. Sachse S, Rueckert E, Keller A, Okada R, Tanaka NK et al (2007) Activity-dependent plasticity in an olfactory circuit. Neuron 56:838–850

    CAS  PubMed  Google Scholar 

  158. Das S, Sadanandappa MK, Dervan A, Larkin A, Lee JA et al (2011) Plasticity of local GABAergic interneurons drives olfactory habituation. Proc Natl Acad Sci U S A 108:E646–E654

    CAS  PubMed Central  PubMed  Google Scholar 

  159. McCann C, Holohan EE, Das S, Dervan A, Larkin A et al (2011) The Ataxin-2 protein is required for microRNA function and synapse-specific long-term olfactory habituation. Proc Natl Acad Sci U S A 108:E655–E662

    PubMed Central  PubMed  Google Scholar 

  160. Simons M, Raposo G (2009) Exosomes—vesicular carriers for intercellular communication. Curr Opin Cell Biol 21:575–581

    CAS  PubMed  Google Scholar 

  161. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19:43–51

    CAS  PubMed  Google Scholar 

  163. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–U672

    CAS  PubMed  Google Scholar 

  164. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–U1209

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MAJ, Hopmans ES et al (2010) Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A 107:6328–6333

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Faure J, Lachenal G, Court M, Hirrlinger J, Chatellard-Causse C et al (2006) Exosomes are released by cultured cortical neurones. Mol Cell Neurosci 31:642–648

    CAS  PubMed  Google Scholar 

  167. Lachenal G, Pernet-Gallay K, Chivet M, Hemming FJ, Belly A et al (2011) Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol Cell Neurosci 46:409–418

    CAS  PubMed  Google Scholar 

  168. Halassa MM, Fellin T, Haydon PG (2007) The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med 13:54–63

    CAS  PubMed  Google Scholar 

  169. Eroglu C, Barres BA (2010) Regulation of synaptic connectivity by glia. Nature 468:223–231

    CAS  PubMed  Google Scholar 

  170. Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM et al (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 10:615–622

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Hennig MH, Adams C, Willshaw D, Sernagor E (2009) Early-stage waves in the retinal network emerge close to a critical state transition between local and global functional connectivity. J Neurosci 29:1077–1086

    CAS  PubMed  Google Scholar 

  172. Kihara AH, Santos TO, Osuna-Melo EJ, Paschon V, Vidal KS et al (2010) Connexin-mediated communication controls cell proliferation and is essential in retinal histogenesis. Int J Dev Neurosci 28:39–52

    CAS  PubMed  Google Scholar 

  173. Kihara AH, de Castro LM, Moriscot AS, Hamassaki DE (2006) Prolonged dark adaptation changes connexin expression in the mouse retina. J Neurosci Res 83:1331–1341

    CAS  PubMed  Google Scholar 

  174. Kinouchi O, Copelli M (2006) Optimal dynamical range of excitable networks at criticality. Nat Phys 2:348–352

    CAS  Google Scholar 

  175. Kihara AH, Tsurumaki AM, Ribeiro-do-Valle LE (2006) Effects of ambient lighting on visual discrimination, forward masking and attentional facilitation. Neurosci Lett 393:36–39

    CAS  PubMed  Google Scholar 

  176. Paschon V, Higa GS, Resende RR, Britto LR, Kihara AH (2012) Blocking of connexin-mediated communication promotes neuroprotection during acute degeneration induced by mechanical trauma. PLoS One 7:e45449

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Belousov AB, Fontes JD (2013) Neuronal gap junctions: making and breaking connections during development and injury. Trends Neurosci 36:227–236

    CAS  PubMed Central  PubMed  Google Scholar 

  178. Sohl G, Maxeiner S, Willecke K (2005) Expression and functions of neuronal gap junctions. Nat Rev Neurosci 6:191–200

    PubMed  Google Scholar 

  179. Beardslee MA, Laing JG, Beyer EC, Saffitz JE (1998) Rapid turnover of connexin43 in the adult rat heart. Circ Res 83:629–635

    CAS  PubMed  Google Scholar 

  180. Becker D, Bonness V, Mobbs P (1998) Cell coupling in the retina: patterns and purpose. Cell Biol Int 22:781–792

    CAS  PubMed  Google Scholar 

  181. Klotz LO (2012) Posttranscriptional regulation of connexin-43 expression. Arch Biochem Biophys 524:23–29

    CAS  PubMed  Google Scholar 

  182. Li X, Pan JH, Song B, Xiong EQ, Chen ZW et al (2012) Suppression of CX43 expression by miR-20a in the progression of human prostate cancer. Cancer Biol Ther 13:890–898

    CAS  PubMed  Google Scholar 

  183. Hao J, Zhang C, Zhang A, Wang K, Jia Z et al (2012) miR-221/222 is the regulator of Cx43 expression in human glioblastoma cells. Oncol Rep 27:1504–1510

    CAS  PubMed  Google Scholar 

  184. Striedinger K, Petrasch-Parwez E, Zoidl G, Napirei M, Meier C et al (2005) Loss of connexin36 increases retinal cell vulnerability to secondary cell loss. Eur J Neurosci 22:605–616

    PubMed  Google Scholar 

  185. Oguro K, Jover T, Tanaka H, Lin Y, Kojima T et al (2001) Global ischemia-induced increases in the gap junctional proteins connexin 32 (Cx32) and Cx36 in hippocampus and enhanced vulnerability of Cx32 knock-out mice. J Neurosci 21:7534–7542

    CAS  PubMed  Google Scholar 

  186. Rash JE, Davidson KG, Kamasawa N, Yasumura T, Kamasawa M et al (2005) Ultrastructural localization of connexins (Cx36, Cx43, Cx45), glutamate receptors and aquaporin-4 in rodent olfactory mucosa, olfactory nerve and olfactory bulb. J Neurocytol 34:307–341

    CAS  PubMed Central  PubMed  Google Scholar 

  187. John B, Enright AJ, Aravin A, Tuschl T, Sander C et al (2004) Human microRNA targets. PLoS Biol 2:e363

    PubMed Central  PubMed  Google Scholar 

  188. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    CAS  PubMed  Google Scholar 

  189. Chang TH, Huang HY, Hsu JB, Weng SL, Horng JT et al (2013) An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs. BMC Bioinforma 14(Suppl 2):S4

    CAS  Google Scholar 

  190. Hunsberger JG, Fessler EB, Wang Z, Elkahloun AG, Chuang DM (2012) Post-insult valproic acid-regulated microRNAs: potential targets for cerebral ischemia. Am J Transl Res 4:316–332

    CAS  PubMed Central  PubMed  Google Scholar 

  191. Hock S, Ng YK, Hasenauer J, Wittmann D, Lutter D et al (2013) Sharpening of expression domains induced by transcription and microRNA regulation within a spatio-temporal model of mid-hindbrain boundary formation. BMC Syst Biol 7:48

    CAS  PubMed  Google Scholar 

  192. Tam Tam S, Bastian I, Zhou XF, Vander Hoek M, Michael MZ et al (2011) MicroRNA-143 expression in dorsal root ganglion neurons. Cell Tissue Res 346:163–173

    CAS  PubMed  Google Scholar 

  193. Liu DZ, Tian Y, Ander BP, Xu H, Stamova BS et al (2010) Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab 30:92–101

    PubMed Central  PubMed  Google Scholar 

  194. Zhu Y, Kalbfleisch T, Brennan MD, Li Y (2009) A microRNA gene is hosted in an intron of a schizophrenia-susceptibility gene. Schizophr Res 109:86–89

    PubMed Central  PubMed  Google Scholar 

  195. Mellios N, Galdzicka M, Ginns E, Baker SP, Rogaev E et al (2012) Gender-specific reduction of estrogen-sensitive small RNA, miR-30b, in subjects with schizophrenia. Schizophr Bull 38:433–443

    PubMed Central  PubMed  Google Scholar 

  196. Valiunas V, Polosina YY, Miller H, Potapova IA, Valiuniene L et al (2005) Connexin-specific cell-to-cell transfer of short interfering RNA by gap junctions. J Physiol 568:459–468

    CAS  PubMed Central  PubMed  Google Scholar 

  197. Wolvetang EJ, Pera MF, Zuckerman KS (2007) Gap junction mediated transport of shRNA between human embryonic stem cells. Biochem Biophys Res Commun 363:610–615

    CAS  PubMed  Google Scholar 

  198. Brink PR, Valiunas V, Gordon C, Rosen MR, Cohen IS (2012) Can gap junctions deliver? Biochim Biophys Acta 1818:2076–2081

    CAS  PubMed  Google Scholar 

  199. Katakowski M, Buller B, Wang X, Rogers T, Chopp M (2010) Functional microRNA is transferred between glioma cells. Cancer Res 70:8259–8263

    CAS  PubMed Central  PubMed  Google Scholar 

  200. Lim PK, Bliss SA, Patel SA, Taborga M, Dave MA et al (2011) Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res 71:1550–1560

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Hiroaki Kihara.

Additional information

Guilherme Shigueto Vilar Higa, Erica de Sousa, and Lais Takata Walter contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higa, G.S.V., de Sousa, E., Walter, L.T. et al. MicroRNAs in Neuronal Communication. Mol Neurobiol 49, 1309–1326 (2014). https://doi.org/10.1007/s12035-013-8603-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8603-7

Keywords

Navigation