Skip to main content

Advertisement

Log in

Regulation of Neurotropic Signaling by the Inducible, NF-kB-Sensitive miRNA-125b in Alzheimer's Disease (AD) and in Primary Human Neuronal-Glial (HNG) Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Inducible microRNAs (miRNAs) perform critical regulatory roles in central nervous system (CNS) development, aging, health, and disease. Using miRNA arrays, RNA sequencing, enhanced Northern dot blot hybridization technologies, Western immunoblot, and bioinformatics analysis, we have studied miRNA abundance and complexity in Alzheimer's disease (AD) brain tissues compared to age-matched controls. In both short post-mortem AD and in stressed primary human neuronal-glial (HNG) cells, we observe a consistent up-regulation of several brain-enriched miRNAs that are under transcriptional control by the pro-inflammatory transcription factor NF-kB. These include miRNA-9, miRNA-34a, miRNA-125b, miRNA-146a, and miRNA-155. Of the inducible miRNAs in this subfamily, miRNA-125b is among the most abundant and significantly induced miRNA species in human brain cells and tissues. Bioinformatics analysis indicated that an up-regulated miRNA-125b could potentially target the 3’untranslated region (3’-UTR) of the messenger RNA (mRNA) encoding (a) a 15-lipoxygenase (15-LOX; ALOX15; chr 17p13.3), utilized in the conversion of docosahexaneoic acid into neuroprotectin D1 (NPD1), and (b) the vitamin D3 receptor (VDR; VD3R; chr12q13.11) of the nuclear hormone receptor superfamily. 15-LOX and VDR are key neuromolecular factors essential in lipid-mediated signaling, neurotrophic support, defense against reactive oxygen and nitrogen species (reactive oxygen and nitrogen species), and neuroprotection in the CNS. Pathogenic effects appear to be mediated via specific interaction of miRNA-125b with the 3'-UTR region of the 15-LOX and VDR messenger RNAs (mRNAs). In AD hippocampal CA1 and in stressed HNG cells, 15-LOX and VDR down-regulation and a deficiency in neurotrophic support may therefore be explained by the actions of a single inducible, pro-inflammatory miRNA-125b. We will review the recent data on the pathogenic actions of this up-regulated miRNA-125b in AD and discuss potential therapeutic approaches using either anti-NF-kB or anti-miRNA-125b strategies. These may be of clinical relevance in the restoration of 15-LOX and VDR expression back to control levels and the re-establishment of homeostatic neurotrophic signaling in the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  PubMed  CAS  Google Scholar 

  2. Perron MP, Provost P (2009) Protein components of the microRNA pathway and human diseases. Methods Mol Biol 487:369–385

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Lukiw WJ (2007) Micro-RNA speciation in fetal, adult and Alzheimer's disease hippocampus. Neuroreport 18:297–300

    Article  PubMed  CAS  Google Scholar 

  4. Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS (2010) Non-coding RNAs: regulators of disease. J Pathol 220:126–139

    Article  PubMed  CAS  Google Scholar 

  5. Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Lukiw WJ, Pogue AI (2007) Induction of specific micro RNA (miRNA) species by ROS-generating metal sulfates in primary human brain cells. J Inorg Biochem 101:1265–1269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Sethi P, Lukiw WJ (2009) Micro-RNA abundance and stability in human brain: specific alterations in Alzheimer's disease temporal lobe neocortex. Neurosci Lett 459:100–104

    Article  PubMed  CAS  Google Scholar 

  8. Mehler MF, Mattick JS (2007) Noncoding RNAs and RNA editing in brain development, functional diversification and neurological disease. Physiol Rev 87:799–823

    Article  PubMed  CAS  Google Scholar 

  9. Rüegger S, Großhans H (2012) MicroRNA turnover: when, how, and why. Trends Biochem Sci 37:436–446

    Article  PubMed  CAS  Google Scholar 

  10. Cui JG, Li YY, Zhao Y, Bhattacharjee S, Lukiw WJ (2010) Differential regulation of interleukin-1 receptor-associated kinase-1 (IRAK-1) and IRAK-2 by miRNA-146a and NF-kB in stressed human astroglial cells and in Alzheimer's disease. J Biol Chem 285:38951–38960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Lukiw WJ, Handley P, Wong L, McLachlan DRC (1992) BC200 and other small RNAs RNA in normal human neocortex, non-Alzheimer dementia (NAD), and senile dementia of the Alzheimer type (AD). Neurochem Res 17:591–597

    Article  PubMed  CAS  Google Scholar 

  12. Tsitsiou E, Lindsay MA (2009) microRNAs and the immune response. Curr Opin Pharmacol 9:514–520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lukiw WJ, Cui JG, Yuan LY, Bhattacharjee PS, Corkern M, Clement C et al (2010) Acyclovir or Aβ42 peptides attenuate HSV-1-induced miRNA-146a levels in human primary brain cells. Neuroreport 21:922–927

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Madathil SK, Nelson PT, Saatman KE, Wilfred BR (2011) MicroRNAs in CNS injury: potential roles and therapeutic implications. Bioessays 33:21–26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Alexandrov PN, Dua P, Hill JM, Bhattacharjee S, Zhao Y, Lukiw WJ (2012) microRNA (miRNA) speciation in Alzheimer's disease (AD) cerebrospinal fluid (CSF) and extracellular fluid (ECF). Int J Biochem Mol Biol 3:365–373

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Hulse AM, Cai JJ (2013) Genetic variants contribute to gene expression variability. Genetics 193:95–108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Cowley MJ, Cotsapas CJ, Williams RB, Chan EK, Pulvers JN, Liu MY, Luo OJ, Nott DJ, Little PF (2009) Intra- and inter-individual genetic differences in gene expression. Mamm Genome 20:281–295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Olson MV (2012) Human genetic individuality. Annu Rev Genomics Hum Genet 13:1–27

    Article  PubMed  CAS  Google Scholar 

  19. Hébert SS, Nelson PT (2012) Studying microRNAs in the brain: technical lessons learned from the first ten years. Exp Neurol 235:397–401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Lukiw WJ (2013) Variability in micro RNA (miRNA) abundance, speciation and complexity amongst different human populations and potential relevance to Alzheimer's disease (AD). Front Cell Neurosci 7:133–136

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen X, Liang H, Zhang J, Zen K, Zhang CY (2012) Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol 22:125–132

    Article  PubMed  CAS  Google Scholar 

  22. Raj A, Rifkin SA, Andersen E, van Oudenaarden A (2010) Variability in gene expression underlies incomplete penetrance. Nature 463:913–918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Zheng W, Gianoulis TA, Karczewski KJ, Zhao H, Snyder M (2011) Regulatory variation within and between species. Annu Rev Genomics Hum Genet 12:327–346

    Article  PubMed  CAS  Google Scholar 

  24. Loring JF, Wen X, Lee JM, Seilhamer J, Somogyi R (2001) A gene expression profile of Alzheimer's disease. DNA Cell Biol 20:683–695

    Article  PubMed  CAS  Google Scholar 

  25. Colangelo V, Schurr J, Ball MJ, Pelaez RP, Lukiw WJ (2002) Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J Neurosci Res 70:462–473

    Article  PubMed  CAS  Google Scholar 

  26. Lukiw WJ (2004) Gene expression profiling in fetal, aged, and Alzheimer hippocampus: a continuum of stress-related signaling. Neurochem Res 29:1287–1297

    Article  PubMed  CAS  Google Scholar 

  27. Ginsberg SD, Alldred MJ, Che S (2012) Gene expression levels assessed by CA1 pyramidal neuron and regional hippocampal dissections in Alzheimer’s disease. Neurobiol Dis 45:99–107. doi:10.1016/j.nbd.2011.07.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kaltschmidt B, Kaltschmidt C (2009) NF-kappaB in the nervous system. Cold Spring Harb Perspect Biol 1:a001271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Lukiw WJ, Bazan NG (1998) Strong NF-kB-DNA binding parallels cyclooxygenase-2 gene transcription in aging and in sporadic Alzheimer's disease superior temporal lobe neocortex. J Neurosci Res 53:583–592

    Article  PubMed  CAS  Google Scholar 

  30. Lukiw WJ (2012) NF-κB-regulated, proinflammatory miRNAs in Alzheimer's disease. Alzheimers Res Ther 4:47–52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Lukiw WJ (2013) Antagonism of NF-kB-up-regulated micro RNAs (miRNAs) in sporadic Alzheimer's disease (AD)-anti-NF-κB vs. anti-miRNA strategies. Front Genet 4:77

    PubMed  PubMed Central  Google Scholar 

  32. Lukiw WJ, Andreeva TV, Grigorenko AP, Rogaev EI (2012) Studying micro RNA function and dysfunction in Alzheimer's disease. Front Genet 3:327–340

    Article  PubMed  PubMed Central  Google Scholar 

  33. Peng T, Jia YJ, Wen QQ, Guan WJ, Zhao EY, Zhang BA (2010) Expression of microRNA in neonatal rats with hypoxic-ischemic brain damage. Zhongguo Dang Dai Er Ke Za Zhi 12:373–376

    PubMed  CAS  Google Scholar 

  34. Pogue AI, Cui JG, Li YY, Zhao Y, Culicchia F, Lukiw WJ (2010) Micro RNA-125b (miRNA-125b) function in astrogliosis and glial cell proliferation. Neurosci Lett 476:18–22

    Article  PubMed  CAS  Google Scholar 

  35. Wan Y, Fei XF, Wang ZM, Jiang DY, Chen HC, Yang J, Shi L, Huang Q (2012) Expression of miR-125b in the new, highly invasive glioma stem cell and progenitor cell line SU3. Chin J Cancer 31:207–214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Lukiw WJ, Alexandrov PN (2012) Regulation of complement factor H (CFH) by multiple miRNAs in Alzheimer's disease (AD) brain. Mol Neurobiol 46:11–19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Lukiw WJ, Surjyadipta B, Dua P, Alexandrov PN (2012) Common micro RNAs (miRNAs) target complement factor H (CFH) regulation in Alzheimer's disease (AD) and in age-related macular degeneration (AMD). Int J Biochem Mol Biol 3:105–116

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Lukiw WJ (2012) NF-кB-regulated micro RNAs (miRNAs) in primary human brain cells. Exp Neurol 235:484–490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Lukiw WJ, Zhao Y, Cui JG (2008) An NF-kB-sensitive micro RNA-146a-mediated inflammatory circuit in Alzheimer disease and in stressed human neural cells. J Biol Chem 283:31315–31322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Nelson PT, Dimayuga J, Wilfred BR (2010) microRNA in situ hybridization in the human entorhinal and transentorhinal cortex. Front Hum Neurosci 4:7–11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Le MT, Xie H, Zhou B, Chia PH, Rizk P, Um M, Udolph G, Yang H, Lim B, Lodish HF (2009) MicroRNA-125b promotes neuronal differentiation in human cells by repressing multiple targets. Mol Cell Biol 29:5290–5305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Shi Y, Huang F, Tang B, Li J, Wang J, Shen L, Xia K, Jiang H (2013) MicroRNA profiling in the serums of SCA3/MJD patients. Int J Neurosci. 2013 in press

  43. Bazan NG, Calandria JM, Gordon WC (2013) Docosahexaenoic acid and its derivative neuroprotectin D1 display neuroprotective properties in the retina, brain and central nervous system. Nestle Nutr Inst Workshop Ser 77:121–131

    Article  PubMed  CAS  Google Scholar 

  44. Orr SK, Palumbo S, Bosetti F, Mount HT, Kang JX, Greenwood CE, Ma DW, Serhan CN, Bazinet RP (2013) Unesterified docosahexaenoic acid is protective in neuroinflammation. J Neurochem 127:378–393

    Article  PubMed  CAS  Google Scholar 

  45. Hennig R, Kehl T, Noor S, Ding XZ, Rao SM, Bergmann F, Fürstenberger G, Büchler MW, Friess H, Krieg P, Adrian TE (2007) 15-lipoxygenase-1 production is lost in pancreatic cancer and overexpression of the gene inhibits tumor cell growth. Neoplasia 9:917–926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Lukiw WJ, Cui JG, Marcheselli VL, Bodker M, Botkjaer A, Gotlinger K, Serhan CN, Bazan NG (2005) A role for docosahexaenoic cid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest 115:2774–2783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Palacios-Pelaez R, Lukiw WJ, Bazan NG (2010) Omega-3 essential fatty acids modulate initiation and progression of neurodegenerative disease. Mol Neurobiol 41:367–374

    Article  PubMed  CAS  Google Scholar 

  48. Uderhardt S, Krönke G (2012) 12/15-lipoxygenase during the regulation of inflammation, immunity, and self-tolerance. J Mol Med (Berl) 90:1247–1256

    Article  CAS  Google Scholar 

  49. Mohri T, Nakajima M, Takagi S, Komagata S, Yokoi T (2009) MicroRNA regulates human vitamin D receptor. Int J Cancer 125:1328–1333

    Article  PubMed  CAS  Google Scholar 

  50. Lehmann DJ, Refsum H, Warden DR, Medway C, Wilcock GK, Smith AD (2011) The vitamin D receptor gene is associated with Alzheimer's disease. Neurosci Lett 504:79–82

    Article  PubMed  CAS  Google Scholar 

  51. Wang L, Hara K, Van Baaren JM, Price JC, Beecham GW, Gallins PJ, Whitehead PL, Wang G, Lu C, Slifer MA, Züchner S, Martin ER, Mash D, Haines JL, Pericak-Vance MA, Gilbert JR (2012) Vitamin D receptor and Alzheimer's disease: a genetic and functional study. Neurobiol Aging 33:1844

    PubMed  Google Scholar 

  52. Garcion E, Wion-Barbot N, Montero-Menei CN, Berger F, Wion D (2002) New clues about vitamin D functions in the nervous system. Trends Endocrinol Metab 13:100–105

    Article  PubMed  CAS  Google Scholar 

  53. Lu'o'ng KV, Nguyen LT (2013) The role of vitamin D in Alzheimer's disease: possible genetic and cell signaling mechanisms. Am J Alzheimers Dis Other Demen 28:126–136

    Article  PubMed  Google Scholar 

  54. DeLuca GC, Kimball SM, Kolasinski J, Ramagopalan SV, Ebers GC (2013) Review: the role of vitamin D in nervous system health and disease. Neuropathol Appl Neurobiol 39:458–484

    Article  PubMed  CAS  Google Scholar 

  55. Nissou MF, Brocard J, El Atifi M, Guttin A, Andrieux A, Berger F, Issartel JP, Wion D (2013) The transcriptomic response of mixed neuron-glial cell cultures to 1,25-dihydroxyvitamin d3 includes genes limiting the progression of neurodegenerative diseases. J Alzheimers Dis 35:553–564

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Dursun E, Gezen-Ak D, Yilmazer S (2013) Beta amyloid suppresses the expression of the vitamin D receptor gene and induces the expression of the vitamin d catabolic enzyme gene in hippocampal neurons. Dement Geriatr Cogn Disord 36:76–86

    Article  PubMed  CAS  Google Scholar 

  57. Pahl L, Schubert S, Skawran B, Sandbothe M, Schmidtke J, Stuhrmann M (2013) 1,25-Dihydroxyvitamin D decreases HTRA1 promoter activity in the rhesus monkey—a plausible explanation for the influence of vitamin D on age-related macular degeneration? Exp Eye Res 116C:234–239

    Article  CAS  Google Scholar 

  58. Annweiler C, Brugg B, Peyrin JM, Bartha R, Beauchet O (2013) Combination of memantine and vitamin D prevents axon degeneration induced by amyloid-beta and glutamate. Neurobiol Aging 35:331–335

    Article  PubMed  CAS  Google Scholar 

  59. Manson JE, Bassuk SS, Lee IM, Cook NR, Albert MA, Gordon D, Zaharris E, Macfadyen JG, Danielson E, Lin J, Zhang SM, Buring JE (2012) The VITamin D and OmegA-3 TriaL (VITAL): rationale and design of a large randomized controlled trial of vitamin D and marine omega-3 fatty acid supplements for the primary prevention of cancer and cardiovascular disease. Contemp Clin Trials 33:159–171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Holló A, Clemens Z, Lakatos P (2013) Epilepsy and Vitamin D. Int J Neurosci. in press

  61. Taghizadeh M, Talaei SA, Djazayeri A, Salami M (2013) Vitamin D supplementation restores suppressed synaptic plasticity in Alzheimer's disease. Nutr Neurosci. in press

  62. Boldin MP, Baltimore D (2012) MicroRNAs, new effectors and regulators of NF-κB. Immunol Rev 246:205–220

    Article  PubMed  CAS  Google Scholar 

  63. Pogue AI, Li YY, Cui JG, Zhao Y, Kruck TP, Percy ME, Tarr MA, Lukiw WJ (2009) Characterization of an NF-kappaB-regulated, miRNA-146a-mediated down-regulation of complement factor H (CFH) in metal-sulfate-stressed human brain cells. J Inorg Biochem 103:1591–1595

    Article  PubMed  CAS  Google Scholar 

  64. Riazanskaia N, Lukiw WJ, Grigorenko A, Korovaitseva G, Dvoryanchikov G, Moliaka Y, Nicolaou M, Farrer L, Bazan NG, Rogaev E (2002) Regulatory region variability in the human presenilin-2 (PSEN2) gene: potential contribution to the gene activity and risk for AD. Mol Psychiatry 7:891–898

    Article  PubMed  CAS  Google Scholar 

  65. McLachlan DR, Lukiw WJ, Kruck TP (1989) New evidence for an active role of aluminum in Alzheimer's disease. Can J Neurol Sci 16:490–497

    PubMed  CAS  Google Scholar 

  66. Hill JM, Zhao Y, Clement C, Neumann DM, Lukiw WJ (2009) HSV-1 infection of human brain cells induces miRNA-146a and Alzheimer-type inflammatory signaling. Neuroreport 20:1500–1505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Bredy TW, Lin Q, Wei W, Baker-Andresen D, Mattick JS (2011) MicroRNA regulation of neural plasticity and memory. Neurobiol Learn Mem 96:89–94

    Article  PubMed  CAS  Google Scholar 

  68. Niemitz E (2012) TREM2 and Alzheimer's disease. Nat Genet 45:11–12

    Article  CAS  Google Scholar 

  69. Heneka MT, O'Banion MK, Terwel D, Kummer MP (2010) Neuroinflammatory processes in Alzheimer's disease. J Neural Transm 117:919–947

    Article  PubMed  CAS  Google Scholar 

  70. Xu D, Sharma C, Hemler ME (2009) Tetraspanin12 regulates ADAM10-dependent cleavage of amyloid precursor protein. FASEB J 23:3674–3681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Zhao Y, Bhattacharjee S, Jones BM, Dua P, Alexandrov PN, Hill JM, Lukiw WJ (2013) Regulation of TREM2 expression by an NF-кB-sensitive miRNA-34a. Neuroreport 24:318–323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Sen R, Baltimore D (1986) Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell 47:921–928

    Article  PubMed  CAS  Google Scholar 

  73. Gilmore TD, Herscovitch M (2006) Inhibitors of NF-kB signaling: 785 and counting. Oncogene 25:6887–6899

    Article  PubMed  CAS  Google Scholar 

  74. Gilmore TD, Garbati MR (2011) Inhibition of NF-κB signaling as a strategy in disease therapy. Curr Top Microbiol Immunol 349:245–263

    PubMed  CAS  Google Scholar 

  75. Nam NH (2006) Naturally occurring NF-kB inhibitors. Mini Rev Med Chem 6:945–951

    Article  PubMed  CAS  Google Scholar 

  76. Chen X, Liang H, Zhang CY, Zen K (2012) miRNA regulates noncoding RNA: a noncanonical function model. Trends Biochem Sci 37:457–459

    Article  PubMed  CAS  Google Scholar 

  77. Lukiw WJ, Alexandrov PN, Zhao Y, Hill JM, Bhattacharjee S (2012) Spreading of Alzheimer's disease inflammatory signaling through soluble micro-RNA. Neuroreport 23:621–626

    Article  PubMed  CAS  Google Scholar 

  78. Pogue AI, Percy ME, Cui JG, Li YY, Bhattacharjee S, Hill JM, Kruck TP, Zhao Y, Lukiw WJ (2011) Up-regulation of NF-kB-sensitive miRNA-125b and miRNA-146a in metal sulfate-stressed human astroglial (HAG) primary cell cultures. J Inorg Biochem 105:1434–1437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Lecrux C, Hamel E (2011) The neurovascular unit in brain function and disease. Acta Physiol (Oxf) 203:47–59

    Article  CAS  Google Scholar 

  80. Erickson MA, Banks WA (2013) Blood–brain barrier dysfunction as a cause and consequence of Alzheimer's disease. J Cereb Blood Flow Metab 33:1500–1513

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was originally presented at the joint meeting of the ISN-ASN in the Satellite Symposium entitled “Unveiling the Significance of Lipid Signaling in Neurodegeneration and Neuroprotection” on 17–19 April 2013, Cancun, Mexico, and at the Alzheimer Association International Conference 2013 (AAIC 2013), Boston, MA, USA on 13–18 July 2013. Sincere thanks are extended to E. Head, M. Ball, W. Poon, F. Culicchia, C. Eicken, and C. Hebel for short post-mortem interval (PMI) human brain tissues or extracts, miRNA array work and initial data interpretation, and to D Guillot and AI Pogue for expert technical assistance. Thanks are also extended to the many physicians and neuropathologists who have provided high-quality, short PMI human brain tissues for study; additional human temporal lobe and hippocampal CA1 control and AD brain tissues were provided by the Memory Impairments and Neurological Disorders (MIND) Institute and the University of California, Irvine Alzheimer's Disease Research Center (UCI-ADRC; NIA P50 AG16573). The content of this manuscript is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. Research in the Lukiw laboratory involving small non-coding RNA (sncRNA), miRNA, the innate immune response, amyloidogenesis and neuro-inflammation in AD, prion disease and AMD was supported through a COBRE III Project, a Translational Research Initiative Grant (LSUHSC), the Louisiana Biotechnology Research Network (LBRN), an Alzheimer Association Investigator-Initiated Research Grant IIRG-09-131729, and NIH NIA Grants AG18031 and AG038834.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter J. Lukiw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Bhattacharjee, S., Jones, B.M. et al. Regulation of Neurotropic Signaling by the Inducible, NF-kB-Sensitive miRNA-125b in Alzheimer's Disease (AD) and in Primary Human Neuronal-Glial (HNG) Cells. Mol Neurobiol 50, 97–106 (2014). https://doi.org/10.1007/s12035-013-8595-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8595-3

Keywords

Navigation