Skip to main content

Advertisement

Log in

Advances in Cellular Models to Explore the Pathophysiology of Amyotrophic Lateral Sclerosis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS), the most common adult-onset motor neuron disorder, is fatal for most patients less than 3 years from when the first symptoms appear. The aetiologies for sporadic and most familial forms of ALS are unknown, but genetic factors are increasingly recognized as causal in a subset of patients. Studies of disease physiology suggest roles for oxidative stress, glutamate-mediated excitotoxicity or protein aggregation; how these pathways interact in the complex pathophysiology of ALS awaits elucidation. Cellular models are being used to examine disease mechanisms. Recent advances include the availability of expanded cell types, from neuronal or glial cell culture to motoneuron–astrocyte co-culture genetically or environmentally modified. Cell culture experiments confirmed the central role of glial cells in ALS. The recent adaptation of induced pluripotent stem cells (iPSC) for ALS modeling could allow a broader perspective and is expected to generate new hypotheses, related particularly to mechanisms underlying genetic factors. Cellular models have provided meaningful advances in the understanding of ALS, but, to date, complete characterization of in vitro models is only partially described. Consensus on methodological approaches, strategies for validation and techniques that allow rapid adaptation to new genetic or environmental influences is needed. In this article, we review the principal cellular models being employed in ALS and highlight their contribution to the understanding of disease mechanisms. We conclude with recommendations on means to enhance the robustness and generalizability of the different concepts for experimental ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Korner S, Kollewe K, Ilsemann J, Muller-Heine A, Dengler R, Krampfl K, Petri S (2012) Prevalence and prognostic impact of comorbidities in amyotrophic lateral sclerosis. Eur J Neurol Off J Eur Fed Neurol Soc. doi:10.1111/ene.12015

    Google Scholar 

  2. Saito M, Tomonaga M, Narabayashi H (1978) Histochemical study of the muscle spindles in parkinsonism, motor neuron disease and myasthenia. An examination of the pathological fusimotor endings by the acetylcholinesterase technic. J Neurol 219(4):261–271

    CAS  PubMed  Google Scholar 

  3. Swash M, Fox KP (1974) The pathology of the human muscle spindle: effect of denervation. J Neurol Sci 22(1):1–24

    CAS  PubMed  Google Scholar 

  4. Andersen PM, Al-Chalabi A (2011) Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat Rev Neurol 7(11):603–615. doi:10.1038/nrneurol.2011.150

    CAS  PubMed  Google Scholar 

  5. Rosen DR (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 364(6435):362

    CAS  PubMed  Google Scholar 

  6. Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, Ackerley S, Durnall JC, Williams KL, Buratti E, Baralle F, de Belleroche J, Mitchell JD, Leigh PN, Al-Chalabi A, Miller CC, Nicholson G, Shaw CE (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319(5870):1668–1672

    CAS  PubMed  Google Scholar 

  7. Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J, Kasarskis EJ, Munsat T, Valdmanis P, Rouleau GA, Hosler BA, Cortelli P, de Jong PJ, Yoshinaga Y, Haines JL, Pericak-Vance MA, Yan J, Ticozzi N, Siddique T, McKenna-Yasek D, Sapp PC, Horvitz HR, Landers JE, Brown RH Jr (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323(5918):1205–1208

    CAS  PubMed  Google Scholar 

  8. Vance C, Rogelj B, Hortobagyi T, De Vos KJ, Nishimura AL, Sreedharan J, Hu X, Smith B, Ruddy D, Wright P, Ganesalingam J, Williams KL, Tripathi V, Al-Saraj S, Al-Chalabi A, Leigh PN, Blair IP, Nicholson G, de Belleroche J, Gallo JM, Miller CC, Shaw CE (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323(5918):1208–1211

    CAS  PubMed  Google Scholar 

  9. Greenway MJ, Alexander MD, Ennis S, Traynor BJ, Corr B, Frost E, Green A, Hardiman O (2004) A novel candidate region for ALS on chromosome 14q11.2. Neurology 63(10):1936–1938

    CAS  PubMed  Google Scholar 

  10. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamson J, Kouri N, Wojtas A, Sengdy P, Hsiung GY, Karydas A, Seeley WW, Josephs KA, Coppola G, Geschwind DH, Wszolek ZK, Feldman H, Knopman DS, Petersen RC, Miller BL, Dickson DW, Boylan KB, Graff-Radford NR, Rademakers R (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72(2):245–256. doi:10.1016/j.neuron.2011.09.011

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L, Kalimo H, Paetau A, Abramzon Y, Remes AM, Kaganovich A, Scholz SW, Duckworth J, Ding J, Harmer DW, Hernandez DG, Johnson JO, Mok K, Ryten M, Trabzuni D, Guerreiro RJ, Orrell RW, Neal J, Murray A, Pearson J, Jansen IE, Sondervan D, Seelaar H, Blake D, Young K, Halliwell N, Callister JB, Toulson G, Richardson A, Gerhard A, Snowden J, Mann D, Neary D, Nalls MA, Peuralinna T, Jansson L, Isoviita VM, Kaivorinne AL, Holtta-Vuori M, Ikonen E, Sulkava R, Benatar M, Wuu J, Chio A, Restagno G, Borghero G, Sabatelli M, Heckerman D, Rogaeva E, Zinman L, Rothstein JD, Sendtner M, Drepper C, Eichler EE, Alkan C, Abdullaev Z, Pack SD, Dutra A, Pak E, Hardy J, Singleton A, Williams NM, Heutink P, Pickering-Brown S, Morris HR, Tienari PJ, Traynor BJ (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72(2):257–268. doi:10.1016/j.neuron.2011.09.010

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Majounie E, Renton AE, Mok K, Dopper EG, Waite A, Rollinson S, Chio A, Restagno G, Nicolaou N, Simon-Sanchez J, van Swieten JC, Abramzon Y, Johnson JO, Sendtner M, Pamphlett R, Orrell RW, Mead S, Sidle KC, Houlden H, Rohrer JD, Morrison KE, Pall H, Talbot K, Ansorge O, Hernandez DG, Arepalli S, Sabatelli M, Mora G, Corbo M, Giannini F, Calvo A, Englund E, Borghero G, Floris GL, Remes AM, Laaksovirta H, McCluskey L, Trojanowski JQ, Van Deerlin VM, Schellenberg GD, Nalls MA, Drory VE, Lu CS, Yeh TH, Ishiura H, Takahashi Y, Tsuji S, Le Ber I, Brice A, Drepper C, Williams N, Kirby J, Shaw P, Hardy J, Tienari PJ, Heutink P, Morris HR, Pickering-Brown S, Traynor BJ (2012) Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol 11(4):323–330. doi:10.1016/s1474-4422(12)70043-1

    CAS  PubMed Central  PubMed  Google Scholar 

  13. van Blitterswijk M, van Es MA, Hennekam EA, Dooijes D, van Rheenen W, Medic J, Bourque PR, Schelhaas HJ, van der Kooi AJ, de Visser M, de Bakker PI, Veldink JH, van den Berg LH (2012) Evidence for an oligogenic basis of amyotrophic lateral sclerosis. Hum Mol Genet 21(17):3776–3784. doi:10.1093/hmg/dds199

    PubMed  Google Scholar 

  14. Al-Chalabi A, Fang F, Hanby MF, Leigh PN, Shaw CE, Ye W, Rijsdijk F (2010) An estimate of amyotrophic lateral sclerosis heritability using twin data. J Neurol Neurosurg Psychiatry 81(12):1324–1326. doi:10.1136/jnnp.2010.207464

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Papapetropoulos S (2007) Is there a role for naturally occurring cyanobacterial toxins in neurodegeneration? The beta-N-methylamino-L-alanine (BMAA) paradigm. Neurochem Int 50(7–8):998–1003. doi:10.1016/j.neuint.2006.12.011

    CAS  PubMed  Google Scholar 

  16. Caller TA, Field NC, Chipman JW, Shi X, Harris BT, Stommel EW (2012) Spatial clustering of amyotrophic lateral sclerosis and the potential role of BMAA. Amyotroph Lateral Scler Off Publ World Fed Neurol Res Group Motor Neuron Dis 13(1):25–32. doi:10.3109/17482968.2011.621436

    CAS  Google Scholar 

  17. Vinceti M, Bottecchi I, Fan A, Finkelstein Y, Mandrioli J (2012) Are environmental exposures to selenium, heavy metals, and pesticides risk factors for amyotrophic lateral sclerosis? Rev Environ Health 27(1):19–41

    PubMed  Google Scholar 

  18. Wang H, O'Reilly EJ, Weisskopf MG, Logroscino G, McCullough ML, Thun MJ, Schatzkin A, Kolonel LN, Ascherio A (2011) Smoking and risk of amyotrophic lateral sclerosis: a pooled analysis of 5 prospective cohorts. Arch Neurol 68(2):207–213. doi:10.1001/archneurol.2010.367

    PubMed Central  PubMed  Google Scholar 

  19. Pupillo E, Messina P, Logroscino G, Zoccolella S, Chio A, Calvo A, Corbo M, Lunetta C, Micheli A, Millul A, Vitelli E, Beghi E (2012) Trauma and amyotrophic lateral sclerosis: a case–control study from a population-based registry. Eur J Neurol Off J Eur Fed Neurol Soc 19(12):1509–1517. doi:10.1111/j.1468-1331.2012.03723.x

    CAS  Google Scholar 

  20. Huisman MH, Seelen M, de Jong SW, Dorresteijn KR, van Doormaal PT, van der Kooi AJ, de Visser M, Schelhaas HJ, van den Berg LH, Veldink JH (2013) Lifetime physical activity and the risk of amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. doi:10.1136/jnnp-2012-304724

    PubMed  Google Scholar 

  21. Barber SC, Shaw PJ (2010) Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic Biol Med 48(5):629–641. doi:10.1016/j.freeradbiomed.2009.11.018

    CAS  PubMed  Google Scholar 

  22. Guegan C, Vila M, Rosoklija G, Hays AP, Przedborski S (2001) Recruitment of the mitochondrial-dependent apoptotic pathway in amyotrophic lateral sclerosis. J Neurosci Off J Soc Neurosci 21(17):6569–6576

    CAS  Google Scholar 

  23. Watanabe M, Dykes-Hoberg M, Culotta VC, Price DL, Wong PC, Rothstein JD (2001) Histological evidence of protein aggregation in mutant SOD1 transgenic mice and in amyotrophic lateral sclerosis neural tissues. Neurobiol Dis 8(6):933–941

    CAS  PubMed  Google Scholar 

  24. Just N, Moreau C, Lassalle P, Gosset P, Perez T, Brunaud-Danel V, Wallaert B, Destee A, Defebvre L, Tonnel AB, Devos D (2007) High erythropoietin and low vascular endothelial growth factor levels in cerebrospinal fluid from hypoxemic ALS patients suggest an abnormal response to hypoxia. Neuromuscul Disord 17(2):169–173

    CAS  PubMed  Google Scholar 

  25. Moreau C, Devos D, Gosset P, Brunaud-Danel V, Tonnel AB, Lassalle P, Defebvre L, Destee A (2010) Mechanisms of deregulated response to hypoxia in sporadic amyotrophic lateral sclerosis: a clinical study. Rev Neurol 166(3):279–283. doi:10.1016/j.neurol.2009.05.018

    CAS  PubMed  Google Scholar 

  26. Gagliardi S, Milani P, Sardone V, Pansarasa O, Cereda C (2012) From transcriptome to noncoding RNAs: implications in ALS mechanism. Neurol Res Int 2012:278725. doi:10.1155/2012/278725

    PubMed Central  PubMed  Google Scholar 

  27. McGeer PL, McGeer EG (2002) Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve 26(4):459–470

    CAS  PubMed  Google Scholar 

  28. Ferraiuolo L, Kirby J, Grierson AJ, Sendtner M, Shaw PJ (2011) Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nat Rev Neurol 7(11):616–630. doi:10.1038/nrneurol.2011.152

    CAS  PubMed  Google Scholar 

  29. Corcia P, Pradat PF, Salachas F, Bruneteau G, Forestier N, Seilhean D, Hauw JJ, Meininger V (2008) Causes of death in a post-mortem series of ALS patients. Amyotroph Lateral Scler Off Publ World Fed Neurol Res Group Motor Neuron Dis 9(1):59–62. doi:10.1080/17482960701656940

    Google Scholar 

  30. Kirby J, Ning K, Ferraiuolo L, Heath PR, Ismail A, Kuo SW, Valori CF, Cox L, Sharrack B, Wharton SB, Ince PG, Shaw PJ, Azzouz M (2011) Phosphatase and tensin homologue/protein kinase B pathway linked to motor neuron survival in human superoxide dismutase 1-related amyotrophic lateral sclerosis. Brain J Neurol 134(Pt 2):506–517. doi:10.1093/brain/awq345

    Google Scholar 

  31. Sala G, Tremolizzo L, Melchionda L, Stefanoni G, Derosa M, Susani E, Pagani A, Perini M, Pettini P, Tavernelli F, Zarcone D, Ferrarese C (2012) A panel of macroautophagy markers in lymphomonocytes of patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Off Publ World Fed Neurol Res Group Motor Neuron Dis 13(1):119–124. doi:10.3109/17482968.2011.611139

    CAS  Google Scholar 

  32. Wuolikainen A, Moritz T, Marklund SL, Antti H, Andersen PM (2011) Disease-related changes in the cerebrospinal fluid metabolome in amyotrophic lateral sclerosis detected by GC/TOFMS. PLoS ONE 6(4):e17947. doi:10.1371/journal.pone.0017947

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Blasco H, Corcia P, Moreau C, Veau S, Fournier C, Vourc'h P, Emond P, Gordon P, Pradat PF, Praline J, Devos D, Nadal-Desbarats L, Andres CR (2010) 1H-NMR-based metabolomic profiling of CSF in early amyotrophic lateral sclerosis. PLoS ONE 5(10):e13223. doi:10.1371/journal.pone.0013223

    PubMed Central  PubMed  Google Scholar 

  34. Kumar A, Bala L, Kalita J, Misra UK, Singh RL, Khetrapal CL, Babu GN (2010) Metabolomic analysis of serum by (1) H NMR spectroscopy in amyotrophic lateral sclerosis. Clin Chim Acta Int J Clin Chem 411(7–8):563–567. doi:10.1016/j.cca.2010.01.016

    CAS  Google Scholar 

  35. von Neuhoff N, Oumeraci T, Wolf T, Kollewe K, Bewerunge P, Neumann B, Brors B, Bufler J, Wurster U, Schlegelberger B, Dengler R, Zapatka M, Petri S (2012) Monitoring CSF proteome alterations in amyotrophic lateral sclerosis: obstacles and perspectives in translating a novel marker panel to the clinic. PLoS ONE 7(9):e44401. doi:10.1371/journal.pone.0044401

    Google Scholar 

  36. Gurney ME (1994) Transgenic-mouse model of amyotrophic lateral sclerosis. N Engl J Med 331(25):1721–1722

    CAS  PubMed  Google Scholar 

  37. McGoldrick P, Joyce PI, Fisher EM, Greensmith L (2013) Rodent models of amyotrophic lateral sclerosis. Biochim Biophys Acta. doi:10.1016/j.bbadis.2013.03.012

    PubMed  Google Scholar 

  38. Scott S, Kranz JE, Cole J, Lincecum JM, Thompson K, Kelly N, Bostrom A, Theodoss J, Al-Nakhala BM, Vieira FG, Ramasubbu J, Heywood JA (2008) Design, power, and interpretation of studies in the standard murine model of ALS. Amyotroph Lateral Scler Off Publ World Fed Neurol Res Group Motor Neuron Dis 9(1):4–15. doi:10.1080/17482960701856300

    CAS  Google Scholar 

  39. Ludolph AC, Bendotti C, Blaugrund E, Hengerer B, Loffler JP, Martin J, Meininger V, Meyer T, Moussaoui S, Robberecht W, Scott S, Silani V, Van Den Berg LH (2007) Guidelines for the preclinical in vivo evaluation of pharmacological active drugs for ALS/MND: report on the 142nd ENMC international workshop. Amyotroph Lateral Scler Off Publ World Fed Neurol Res Group Motor Neuron Dis 8(4):217–223. doi:10.1080/17482960701292837

    CAS  Google Scholar 

  40. Kryndushkin D, Ihrke G, Piermartiri TC, Shewmaker F (2012) A yeast model of optineurin proteinopathy reveals a unique aggregation pattern associated with cellular toxicity. Mol Microbiol 86(6):1531–1547. doi:10.1111/mmi.12075

    CAS  PubMed  Google Scholar 

  41. Haidet-Phillips AM, Hester ME, Miranda CJ, Meyer K, Braun L, Frakes A, Song S, Likhite S, Murtha MJ, Foust KD, Rao M, Eagle A, Kammesheidt A, Christensen A, Mendell JR, Burghes AH, Kaspar BK (2011) Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat Biotechnol 29(9):824–828. doi:10.1038/nbt.1957

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CE, Eggan K (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321(5893):1218–1221. doi:10.1126/science.1158799

    CAS  PubMed  Google Scholar 

  43. Boutahar N, Wierinckx A, Camdessanche JP, Antoine JC, Reynaud E, Lassabliere F, Lachuer J, Borg J (2011) Differential effect of oxidative or excitotoxic stress on the transcriptional profile of amyotrophic lateral sclerosis-linked mutant SOD1 cultured neurons. J Neurosci Res 89(9):1439–1450. doi:10.1002/jnr.22672

    CAS  PubMed  Google Scholar 

  44. Shiina Y, Arima K, Tabunoki H, Satoh J (2010) TDP-43 dimerizes in human cells in culture. Cell Mol Neurobiol 30(4):641–652. doi:10.1007/s10571-009-9489-9

    CAS  PubMed  Google Scholar 

  45. Urushitani M, Kurisu J, Tsukita K, Takahashi R (2002) Proteasomal inhibition by misfolded mutant superoxide dismutase 1 induces selective motor neuron death in familial amyotrophic lateral sclerosis. J Neurochem 83(5):1030–1042

    CAS  PubMed  Google Scholar 

  46. Boutahar N, Reynaud E, Lassabliere F, Borg J (2008) Timing differences of signaling response in neuron cultures activated by glutamate analogue or free radicals. Brain Res 1191:20–29. doi:10.1016/j.brainres.2007.11.016

    CAS  PubMed  Google Scholar 

  47. Al-Saif A, Al-Mohanna F, Bohlega S (2011) A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Ann Neurol 70(6):913–919. doi:10.1002/ana.22534

    CAS  PubMed  Google Scholar 

  48. Foran E, Bogush A, Goffredo M, Roncaglia P, Gustincich S, Pasinelli P, Trotti D (2011) Motor neuron impairment mediated by a sumoylated fragment of the glial glutamate transporter EAAT2. Glia 59(11):1719–1731. doi:10.1002/glia.21218

    PubMed Central  PubMed  Google Scholar 

  49. Duplan L, Bernard N, Casseron W, Dudley K, Thouvenot E, Honnorat J, Rogemond V, De Bovis B, Aebischer P, Marin P, Raoul C, Henderson CE, Pettmann B (2010) Collapsin response mediator protein 4a (CRMP4a) is upregulated in motoneurons of mutant SOD1 mice and can trigger motoneuron axonal degeneration and cell death. J Neurosci Off J Soc Neurosci 30(2):785–796. doi:10.1523/jneurosci.5411-09.2010

    CAS  Google Scholar 

  50. Budini M, Romano V, Avendano-Vazquez SE, Bembich S, Buratti E, Baralle FE (2012) Role of selected mutations in the Q/N rich region of TDP-43 in EGFP-12xQ/N-induced aggregate formation. Brain Res 1462:139–150. doi:10.1016/j.brainres.2012.02.031

    CAS  PubMed  Google Scholar 

  51. Lagier-Tourenne C, Polymenidou M, Hutt KR, Vu AQ, Baughn M, Huelga SC, Clutario KM, Ling SC, Liang TY, Mazur C, Wancewicz E, Kim AS, Watt A, Freier S, Hicks GG, Donohue JP, Shiue L, Bennett CF, Ravits J, Cleveland DW, Yeo GW (2012) Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nat Neurosci 15(11):1488–1497. doi:10.1038/nn.3230

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Okle O, Stemmer K, Deschl U, Dietrich DR (2013) L-BMAA induced ER stress and enhanced caspase 12 cleavage in human neuroblastoma SH-SY5Y cells at low nonexcitotoxic concentrations. Toxicol Sci Off J Soc Toxicol 131(1):217–224. doi:10.1093/toxsci/kfs291

    CAS  Google Scholar 

  53. Huang YH, Shih CM, Huang CJ, Lin CM, Chou CM, Tsai ML, Liu TP, Chiu JF, Chen CT (2006) Effects of cadmium on structure and enzymatic activity of Cu, Zn-SOD and oxidative status in neural cells. J Cell Biochem 98(3):577–589. doi:10.1002/jcb.20772

    CAS  PubMed  Google Scholar 

  54. Lee M, Hyun DH, Halliwell B, Jenner P (2001) Effect of overexpression of wild-type and mutant Cu/Zn-superoxide dismutases on oxidative stress and cell death induced by hydrogen peroxide, 4-hydroxynonenal or serum deprivation: potentiation of injury by ALS-related mutant superoxide dismutases and protection by Bcl-2. J Neurochem 78(2):209–220

    CAS  PubMed  Google Scholar 

  55. Soo KY, Atkin JD, Horne MK, Nagley P (2009) Recruitment of mitochondria into apoptotic signaling correlates with the presence of inclusions formed by amyotrophic lateral sclerosis-associated SOD1 mutations. J Neurochem 108(3):578–590. doi:10.1111/j.1471-4159.2008.05799.x

    CAS  PubMed  Google Scholar 

  56. Chi L, Ke Y, Luo C, Gozal D, Liu R (2007) Depletion of reduced glutathione enhances motor neuron degeneration in vitro and in vivo. Neuroscience 144(3):991–1003. doi:10.1016/j.neuroscience.2006.09.064

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Xu R, Wu C, Zhang X, Zhang Q, Yang Y, Yi J, Yang R, Tao Y (2011) Linking hypoxic and oxidative insults to cell death mechanisms in models of ALS. Brain Res 1372:133–144. doi:10.1016/j.brainres.2010.11.056

    CAS  PubMed  Google Scholar 

  58. Sebastia J, Kieran D, Breen B, King MA, Netteland DF, Joyce D, Fitzpatrick SF, Taylor CT, Prehn JH (2009) Angiogenin protects motoneurons against hypoxic injury. Cell Death Differ 16(9):1238–1247. doi:10.1038/cdd.2009.52

    CAS  PubMed  Google Scholar 

  59. Mahajan SS, Thai KH, Chen K, Ziff E (2011) Exposure of neurons to excitotoxic levels of glutamate induces cleavage of the RNA editing enzyme, adenosine deaminase acting on RNA 2, and loss of GLUR2 editing. Neuroscience 189:305–315. doi:10.1016/j.neuroscience.2011.05.027

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Rothstein JD, Jin L, Dykes-Hoberg M, Kuncl RW (1993) Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc Natl Acad Sci U S A 90(14):6591–6595

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Fritz E, Izaurieta P, Weiss A, Mir FR, Rojas P, Gonzalez D, Rojas F, Brown RH, Madrid R, van Zundert B (2013) Mutant SOD1-expressing astrocytes release toxic factors that trigger motor neuron death by inducing hyper-excitability. J Neurophysiol. doi:10.1152/jn.00500.2012

    PubMed  Google Scholar 

  62. Song W, Song Y, Kincaid B, Bossy B, Bossy-Wetzel E (2013) Mutant SOD1G93A triggers mitochondrial fragmentation in spinal cord motor neurons: neuroprotection by SIRT3 and PGC-1alpha. Neurobiol Dis 51:72–81. doi:10.1016/j.nbd.2012.07.004

    CAS  PubMed  Google Scholar 

  63. Caioli S, Curcio L, Pieri M, Antonini A, Marolda R, Severini C, Zona C (2011) Substance P receptor activation induces downregulation of the AMPA receptor functionality in cortical neurons from a genetic model of amyotrophic lateral sclerosis. Neurobiol Dis 44(1):92–101. doi:10.1016/j.nbd.2011.06.008

    CAS  PubMed  Google Scholar 

  64. Camu W, Henderson CE (1992) Purification of embryonic rat motoneurons by panning on a monoclonal antibody to the low-affinity NGF receptor. J Neurosci Methods 44(1):59–70

    CAS  PubMed  Google Scholar 

  65. Fujisawa T, Homma K, Yamaguchi N, Kadowaki H, Tsuburaya N, Naguro I, Matsuzawa A, Takeda K, Takahashi Y, Goto J, Tsuji S, Nishitoh H, Ichijo H (2012) A novel monoclonal antibody reveals a conformational alteration shared by amyotrophic lateral sclerosis-linked SOD1 mutants. Ann Neurol 72(5):739–749. doi:10.1002/ana.23668

    CAS  PubMed  Google Scholar 

  66. Prell T, Lautenschlager J, Witte OW, Carri MT, Grosskreutz J (2012) The unfolded protein response in models of human mutant G93A amyotrophic lateral sclerosis. Eur J Neurosci 35(5):652–660. doi:10.1111/j.1460-9568.2012.08008.x

    CAS  PubMed  Google Scholar 

  67. Roberts K, Zeineddine R, Corcoran L, Li W, Campbell IL, Yerbury JJ (2013) Extracellular aggregated Cu/Zn superoxide dismutase activates microglia to give a cytotoxic phenotype. Glia 61(3):409–419. doi:10.1002/glia.22444

    PubMed  Google Scholar 

  68. Chen Y, Balasubramaniyan V, Peng J, Hurlock EC, Tallquist M, Li J, Lu QR (2007) Isolation and culture of rat and mouse oligodendrocyte precursor cells. Nat Protoc 2(5):1044–1051. doi:10.1038/nprot.2007.149

    CAS  PubMed  Google Scholar 

  69. Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, Liu Y, Tsingalia A, Jin L, Zhang PW, Pellerin L, Magistretti PJ, Rothstein JD (2012) Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487(7408):443–448. doi:10.1038/nature11314

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Berger JV, Dumont AO, Focant MC, Vergouts M, Sternotte A, Calas AG, Goursaud S, Hermans E (2012) Opposite regulation of metabotropic glutamate receptor 3 and metabotropic glutamate receptor 5 by inflammatory stimuli in cultured microglia and astrocytes. Neuroscience 205:29–38. doi:10.1016/j.neuroscience.2011.12.044

    CAS  PubMed  Google Scholar 

  71. Saura J, Tusell JM, Serratosa J (2003) High-yield isolation of murine microglia by mild trypsinization. Glia 44(3):183–189. doi:10.1002/glia.10274

    PubMed  Google Scholar 

  72. Di Giorgio FP, Boulting GL, Bobrowicz S, Eggan KC (2008) Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation. Cell Stem Cell 3(6):637–648

    PubMed  Google Scholar 

  73. Perlson E, Jeong GB, Ross JL, Dixit R, Wallace KE, Kalb RG, Holzbaur EL (2009) A switch in retrograde signaling from survival to stress in rapid-onset neurodegeneration. J Neurosci Off J Soc Neurosci 29(31):9903–9917. doi:10.1523/jneurosci.0813-09.2009

    CAS  Google Scholar 

  74. Zhao W, Beers DR, Henkel JS, Zhang W, Urushitani M, Julien JP, Appel SH (2010) Extracellular mutant SOD1 induces microglial-mediated motoneuron injury. Glia 58(2):231–243. doi:10.1002/glia.20919

    PubMed Central  PubMed  Google Scholar 

  75. Li Q, Spencer NY, Pantazis NJ, Engelhardt JF (2011) Alsin and SOD1(G93A) proteins regulate endosomal reactive oxygen species production by glial cells and proinflammatory pathways responsible for neurotoxicity. J Biol Chem 286(46):40151–40162. doi:10.1074/jbc.M111.279711

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Liao B, Zhao W, Beers DR, Henkel JS, Appel SH (2012) Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Exp Neurol 237(1):147–152. doi:10.1016/j.expneurol.2012.06.011

    CAS  PubMed  Google Scholar 

  77. Serio A, Bilican B, Barmada SJ, Ando DM, Zhao C, Siller R, Burr K, Haghi G, Story D, Nishimura AL, Carrasco MA, Phatnani HP, Shum C, Wilmut I, Maniatis T, Shaw CE, Finkbeiner S, Chandran S (2013) Astrocyte pathology and the absence of non-cell autonomy in an induced pluripotent stem cell model of TDP-43 proteinopathy. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1300398110

    PubMed Central  PubMed  Google Scholar 

  78. Van Den Bosch L, Vandenberghe W, Klaassen H, Van Houtte E, Robberecht W (2000) Ca(2+)-permeable AMPA receptors and selective vulnerability of motor neurons. J Neurol Sci 180(1–2):29–34

    Google Scholar 

  79. Peluffo H, Shacka JJ, Ricart K, Bisig CG, Martinez-Palma L, Pritsch O, Kamaid A, Eiserich JP, Crow JP, Barbeito L, Estevez AG (2004) Induction of motor neuron apoptosis by free 3-nitro-l-tyrosine. J Neurochem 89(3):602–612. doi:10.1046/j.1471-4159.2004.02363.x

    CAS  PubMed  Google Scholar 

  80. Pehar M, Cassina P, Vargas MR, Castellanos R, Viera L, Beckman JS, Estevez AG, Barbeito L (2004) Astrocytic production of nerve growth factor in motor neuron apoptosis: implications for amyotrophic lateral sclerosis. J Neurochem 89(2):464–473. doi:10.1111/j.1471-4159.2004.02357.x

    CAS  PubMed  Google Scholar 

  81. Zagami CJ, Beart PM, Wallis N, Nagley P, O'Shea RD (2009) Oxidative and excitotoxic insults exert differential effects on spinal motoneurons and astrocytic glutamate transporters: implications for the role of astrogliosis in amyotrophic lateral sclerosis. Glia 57(2):119–135. doi:10.1002/glia.20739

    PubMed  Google Scholar 

  82. Bogaert E, Van Damme P, Poesen K, Dhondt J, Hersmus N, Kiraly D, Scheveneels W, Robberecht W, Van Den Bosch L (2010) VEGF protects motor neurons against excitotoxicity by upregulation of GluR2. Neurobiol Aging 31(12):2185–2191. doi:10.1016/j.neurobiolaging.2008.12.007

    CAS  PubMed  Google Scholar 

  83. Ragancokova D, Song Y, Nau H, Dengler R, Krampfl K, Petri S (2010) Modulation of synaptic transmission and analysis of neuroprotective effects of valproic acid and derivates in rat embryonic motoneurons. Cell Mol Neurobiol 30(6):891–900. doi:10.1007/s10571-010-9518-8

    CAS  PubMed  Google Scholar 

  84. Wallis N, Zagami CJ, Beart PM, O'Shea RD (2012) Combined excitotoxic–oxidative stress and the concept of non-cell autonomous pathology of ALS: insights into motoneuron axonopathy and astrogliosis. Neurochem Int. doi:10.1016/j.neuint.2012.02.026

    PubMed  Google Scholar 

  85. Haastert K, Grosskreutz J, Jaeckel M, Laderer C, Bufler J, Grothe C, Claus P (2005) Rat embryonic motoneurons in long-term co-culture with Schwann cells—a system to investigate motoneuron diseases on a cellular level in vitro. J Neurosci Methods 142(2):275–284. doi:10.1016/j.jneumeth.2004.09.003

    PubMed  Google Scholar 

  86. Soo KY, Atkin JD, Farg M, Walker AK, Horne MK, Nagley P (2012) Bim links ER stress and apoptosis in cells expressing mutant SOD1 associated with amyotrophic lateral sclerosis. PLoS ONE 7(4):e35413. doi:10.1371/journal.pone.0035413

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Kabashi E, Lin L, Tradewell ML, Dion PA, Bercier V, Bourgouin P, Rochefort D, Bel Hadj S, Durham HD, Vande Velde C, Rouleau GA, Drapeau P (2010) Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause motor deficits in vivo. Hum Mol Genet 19(4):671–683. doi:10.1093/hmg/ddp534

    CAS  PubMed  Google Scholar 

  88. Ezzi SA, Urushitani M, Julien JP (2007) Wild-type superoxide dismutase acquires binding and toxic properties of ALS-linked mutant forms through oxidation. J Neurochem 102(1):170–178. doi:10.1111/j.1471-4159.2007.04531.x

    PubMed  Google Scholar 

  89. Hadzhieva M, Kirches E, Wilisch-Neumann A, Pachow D, Wallesch M, Schoenfeld P, Paege I, Vielhaber S, Petri S, Keilhoff G, Mawrin C (2013) Dysregulation of iron protein expression in the G93A model of amyotrophic lateral sclerosis. Neuroscience 230:94–101. doi:10.1016/j.neuroscience.2012.11.021

    CAS  PubMed  Google Scholar 

  90. Jaiswal MK, Zech WD, Goos M, Leutbecher C, Ferri A, Zippelius A, Carri MT, Nau R, Keller BU (2009) Impairment of mitochondrial calcium handling in a mtSOD1 cell culture model of motoneuron disease. BMC Neurosci 10:64. doi:10.1186/1471-2202-10-64

    PubMed Central  PubMed  Google Scholar 

  91. Pokrishevsky E, Grad LI, Yousefi M, Wang J, Mackenzie IR, Cashman NR (2012) Aberrant localization of FUS and TDP43 is associated with misfolding of SOD1 in amyotrophic lateral sclerosis. PLoS ONE 7(4):e35050. doi:10.1371/journal.pone.0035050

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Meyerowitz J, Parker SJ, Vella LJ, Ng D, Price KA, Liddell JR, Caragounis A, Li QX, Masters CL, Nonaka T, Hasegawa M, Bogoyevitch MA, Kanninen KM, Crouch PJ, White AR (2011) C-Jun N-terminal kinase controls TDP-43 accumulation in stress granules induced by oxidative stress. Mol Neurodegener 6:57. doi:10.1186/1750-1326-6-57

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A 73(7):2424–2428

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Trippier PC, Benmohammed R, Kirsch DR, Silverman RB (2012) Substituted pyrazolones require N2 hydrogen bond donating ability to protect against cytotoxicity from protein aggregation of mutant superoxide dismutase 1. Bioorg Med Chem Lett 22(21):6647–6650. doi:10.1016/j.bmcl.2012.08.114

    CAS  PubMed  Google Scholar 

  95. Chou CM, Huang CJ, Shih CM, Chen YP, Liu TP, Chen CT (2005) Identification of three mutations in the Cu, Zn-superoxide dismutase (Cu, Zn-SOD) gene with familial amyotrophic lateral sclerosis: transduction of human Cu, Zn-SOD into PC12 cells by HIV-1 TAT protein basic domain. Ann N Y Acad Sci 1042:303–313. doi:10.1196/annals.1338.053

    CAS  PubMed  Google Scholar 

  96. Liu R, Narla RK, Kurinov I, Li B, Uckun FM (1999) Increased hydroxyl radical production and apoptosis in PC12 neuron cells expressing the gain-of-function mutant G93A SOD1 gene. Radiat Res 151(2):133–141

    CAS  PubMed  Google Scholar 

  97. Wright PD, Wightman N, Huang M, Weiss A, Sapp PC, Cuny GD, Ivinson AJ, Glicksman MA, Ferrante RJ, Matson W, Matson S, Brown RH Jr (2012) A high-throughput screen to identify inhibitors of SOD1 transcription. Front Biosci (Elite edition) 4:2801–2808

    Google Scholar 

  98. Benmohamed R, Arvanites AC, Kim J, Ferrante RJ, Silverman RB, Morimoto RI, Kirsch DR (2011) Identification of compounds protective against G93A-SOD1 toxicity for the treatment of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Off Publ World Fed Neurol Res Group Motor Neuron Dis 12(2):87–96. doi:10.3109/17482968.2010.522586

    CAS  Google Scholar 

  99. Cashman NR, Durham HD, Blusztajn JK, Oda K, Tabira T, Shaw IT, Dahrouge S, Antel JP (1992) Neuroblastoma × spinal cord (NSC) hybrid cell lines resemble developing motor neurons. Dev Dyn 194(3):209–221

    CAS  PubMed  Google Scholar 

  100. Eggett CJ, Crosier S, Manning P, Cookson MR, Menzies FM, McNeil CJ, Shaw PJ (2000) Development and characterisation of a glutamate-sensitive motor neurone cell line. J Neurochem 74(5):1895–1902

    CAS  PubMed  Google Scholar 

  101. Prause J, Goswami A, Katona I, Roos A, Schnizler M, Bushuven E, Dreier A, Buchkremer S, Johann S, Beyer C, Deschauer M, Troost D, Weis J (2013) Altered localization, abnormal modification and loss of function of sigma receptor-1 in amyotrophic lateral sclerosis. Hum Mol Genet. doi:10.1093/hmg/ddt008

    PubMed  Google Scholar 

  102. Barber SC, Higginbottom A, Mead RJ, Barber S, Shaw PJ (2009) An in vitro screening cascade to identify neuroprotective antioxidants in ALS. Free Radic Biol Med 46(8):1127–1138. doi:10.1016/j.freeradbiomed.2009.01.019

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Cookson MR, Menzies FM, Manning P, Eggett CJ, Figlewicz DA, McNeil CJ, Shaw PJ (2002) Cu/Zn superoxide dismutase (SOD1) mutations associated with familial amyotrophic lateral sclerosis (ALS) affect cellular free radical release in the presence of oxidative stress. Amyotroph Lateral Scler Motor Neuron Disord Off Publ World Fed Neurol Res Group Motor Neuron Dis 3(2):75–85. doi:10.1080/146608202760196048

    CAS  Google Scholar 

  104. Rembach A, Turner BJ, Bruce S, Cheah IK, Scott RL, Lopes EC, Zagami CJ, Beart PM, Cheung NS, Langford SJ, Cheema SS (2004) Antisense peptide nucleic acid targeting GluR3 delays disease onset and progression in the SOD1 G93A mouse model of familial ALS. J Neurosci Res 77(4):573–582. doi:10.1002/jnr.20191

    CAS  PubMed  Google Scholar 

  105. Crawford GD Jr, Le WD, Smith RG, Xie WJ, Stefani E, Appel SH (1992) A novel N18TG2 × mesencephalon cell hybrid expresses properties that suggest a dopaminergic cell line of substantia nigra origin. J Neurosci Off J Soc Neurosci 12(9):3392–3398

    CAS  Google Scholar 

  106. Wang J, Zhang Y, Tang L, Zhang N, Fan D (2011) Protective effects of resveratrol through the up-regulation of SIRT1 expression in the mutant hSOD1-G93A-bearing motor neuron-like cell culture model of amyotrophic lateral sclerosis. Neurosci Lett 503(3):250–255. doi:10.1016/j.neulet.2011.08.047

    CAS  PubMed  Google Scholar 

  107. Smith RG, Alexianu ME, Crawford G, Nyormoi O, Stefani E, Appel SH (1994) Cytotoxicity of immunoglobulins from amyotrophic lateral sclerosis patients on a hybrid motoneuron cell line. Proc Natl Acad Sci U S A 91(8):3393–3397

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Bosco DA, Lemay N, Ko HK, Zhou H, Burke C, Kwiatkowski TJ Jr, Sapp P, McKenna-Yasek D, Brown RH Jr, Hayward LJ (2010) Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules. Hum Mol Genet 19(21):4160–4175. doi:10.1093/hmg/ddq335

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Guareschi S, Cova E, Cereda C, Ceroni M, Donetti E, Bosco DA, Trotti D, Pasinelli P (2012) An over-oxidized form of superoxide dismutase found in sporadic amyotrophic lateral sclerosis with bulbar onset shares a toxic mechanism with mutant SOD1. Proc Natl Acad Sci U S A 109(13):5074–5079. doi:10.1073/pnas.1115402109

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Hart MP, Gitler AD (2012) ALS-associated ataxin 2 polyQ expansions enhance stress-induced caspase 3 activation and increase TDP-43 pathological modifications. J Neurosci Off J Soc Neurosci 32(27):9133–9142. doi:10.1523/jneurosci.0996-12.2012

    CAS  Google Scholar 

  111. Li XJ, Du ZW, Zarnowska ED, Pankratz M, Hansen LO, Pearce RA, Zhang SC (2005) Specification of motoneurons from human embryonic stem cells. Nat Biotechnol 23(2):215–221. doi:10.1038/nbt1063

    PubMed  Google Scholar 

  112. Amoroso MW, Croft GF, Williams DJ, O'Keeffe S, Carrasco MA, Davis AR, Roybon L, Oakley DH, Maniatis T, Henderson CE, Wichterle H (2013) Accelerated high-yield generation of limb-innervating motor neurons from human stem cells. J Neurosci Off J Soc Neurosci 33(2):574–586. doi:10.1523/jneurosci.0906-12.2013

    CAS  Google Scholar 

  113. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. doi:10.1016/j.cell.2007.11.019

    CAS  PubMed  Google Scholar 

  114. Egawa N, Kitaoka S, Tsukita K, Naitoh M, Takahashi K, Yamamoto T, Adachi F, Kondo T, Okita K, Asaka I, Aoi T, Watanabe A, Yamada Y, Morizane A, Takahashi J, Ayaki T, Ito H, Yoshikawa K, Yamawaki S, Suzuki S, Watanabe D, Hioki H, Kaneko T, Makioka K, Okamoto K, Takuma H, Tamaoka A, Hasegawa K, Nonaka T, Hasegawa M, Kawata A, Yoshida M, Nakahata T, Takahashi R, Marchetto MC, Gage FH, Yamanaka S, Inoue H (2012) Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci Transl Med 4(145):145ra104. doi:10.1126/scitranslmed.3004052

    PubMed  Google Scholar 

  115. Mitne-Neto M, Machado-Costa M, Marchetto MC, Bengtson MH, Joazeiro CA, Tsuda H, Bellen HJ, Silva HC, Oliveira AS, Lazar M, Muotri AR, Zatz M (2011) Downregulation of VAPB expression in motor neurons derived from induced pluripotent stem cells of ALS8 patients. Hum Mol Genet 20(18):3642–3652. doi:10.1093/hmg/ddr284

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Marchetto MC, Muotri AR, Mu Y, Smith AM, Cezar GG, Gage FH (2008) Non-cell-autonomous effect of human SOD1 G37R astrocytes on motor neurons derived from human embryonic stem cells. Cell Stem Cell 3(6):649–657. doi:10.1016/j.stem.2008.10.001

    CAS  PubMed  Google Scholar 

  117. Roybon L, Lamas NJ, Garcia-Diaz A, Yang EJ, Sattler R, Jackson-Lewis V, Kim YA, Kachel CA, Rothstein JD, Przedborski S, Wichterle H, Henderson CE (2013) Human stem cell-derived spinal cord astrocytes with defined mature or reactive phenotypes. Cell Rep 4(5):1035–1048. doi:10.1016/j.celrep.2013.06.021

    CAS  PubMed  Google Scholar 

  118. Majumder P, Chen YT, Bose JK, Wu CC, Cheng WC, Cheng SJ, Fang YH, Chen YL, Tsai KJ, Lien CC, Shen CK (2012) TDP-43 regulates the mammalian spinogenesis through translational repression of Rac1. Acta Neuropathol 124(2):231–245. doi:10.1007/s00401-012-1006-4

    CAS  PubMed  Google Scholar 

  119. Martinou JC, Le Van TA, Cassar G, Roubinet F, Weber MJ (1989) Characterization of two factors enhancing choline acetyltransferase activity in cultures of purified rat motoneurons. J Neurosci Off J Soc Neurosci 9(10):3645–3656

    CAS  Google Scholar 

  120. Masuko S, Kuromi H, Shimada Y (1979) Isolation and culture of motoneurons from embryonic chicken spinal cords. Proc Natl Acad Sci U S A 76(7):3537–3541

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Berg DK, Fischbach GD (1978) Enrichment of spinal cord cell cultures with motoneurons. J Cell Biol 77(1):83–98

    CAS  PubMed  Google Scholar 

  122. Bataille S, Portalier P, Coulon P, Ternaux JP (1998) Influence of acetylcholinesterase on embryonic spinal rat motoneurones growth in culture: a quantitative morphometric study. Eur J Neurosci 10(2):560–572

    CAS  PubMed  Google Scholar 

  123. Schnaar RI, Schaffner AE (1981) Separation of cell types from embryonic chicken and rat spinal cord: characterization of motoneuron-enriched fractions. J Neurosci Off J Soc Neurosci 1(2):204–217

    CAS  Google Scholar 

  124. Arakawa Y, Sendtner M, Thoenen H (1990) Survival effect of ciliary neurotrophic factor (CNTF) on chick embryonic motoneurons in culture: comparison with other neurotrophic factors and cytokines. J Neurosci Off J Soc Neurosci 10(11):3507–3515

    CAS  Google Scholar 

  125. O'Brien RJ, Fischbach GD (1986) Isolation of embryonic chick motoneurons and their survival in vitro. J Neurosci Off J Soc Neurosci 6(11):3265–3274

    Google Scholar 

  126. Wiese S, Herrmann T, Drepper C, Jablonka S, Funk N, Klausmeyer A, Rogers ML, Rush R, Sendtner M (2010) Isolation and enrichment of embryonic mouse motoneurons from the lumbar spinal cord of individual mouse embryos. Nat Protoc 5(1):31–38. doi:10.1038/nprot.2009.193

    CAS  PubMed  Google Scholar 

  127. Klebe RJ, Ruddle FH (1969) Neuroblastoma: cell culture analysis of differentiating stem cell system. J Cell Biol 43:69A

    Google Scholar 

  128. Olmsted JB, Carlson K, Klebe R, Ruddle F, Rosenbaum J (1970) Isolation of microtubule protein from cultured mouse neuroblastoma cells. Proc Natl Acad Sci U S A 65(1):129–136

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Biedler JL, Roffler-Tarlov S, Schachner M, Freedman LS (1978) Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res 38(11 Pt 1):3751–3757

    CAS  PubMed  Google Scholar 

  130. Biedler JL, Helson L, Spengler BA (1973) Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res 33(11):2643–2652

    CAS  PubMed  Google Scholar 

  131. Matsumoto G, Stojanovic A, Holmberg CI, Kim S, Morimoto RI (2005) Structural properties and neuronal toxicity of amyotrophic lateral sclerosis-associated Cu/Zn superoxide dismutase 1 aggregates. J Cell Biol 171(1):75–85. doi:10.1083/jcb.200504050

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Farg MA, Soo KY, Walker AK, Pham H, Orian J, Horne MK, Warraich ST, Williams KL, Blair IP, Atkin JD (2012) Mutant FUS induces endoplasmic reticulum stress in amyotrophic lateral sclerosis and interacts with protein disulfide-isomerase. Neurobiol Aging 33(12):2855–2868. doi:10.1016/j.neurobiolaging.2012.02.009

    CAS  PubMed  Google Scholar 

  133. Blasco H, Bernard-Marissal N, Vourc'h P, Guettard YO, Sunyach C, Augereau O, Khederchah J, Mouzat K, Antar C, Gordon PH, Veyrat-Durebex C, Besson G, Andersen PM, Salachas F, Meininger V, Camu W, Pettmann B, Andres CR, Corcia P (2013) A rare motor neuron deleterious missense mutation in the DPYSL3 (CRMP4) gene is associated with ALS. Hum Mutat. doi:10.1002/humu.22329

    PubMed  Google Scholar 

  134. Wray S, Self M, Lewis PA, Taanman JW, Ryan NS, Mahoney CJ, Liang Y, Devine MJ, Sheerin UM, Houlden H, Morris HR, Healy D, Marti-Masso JF, Preza E, Barker S, Sutherland M, Corriveau RA, D'Andrea M, Schapira AH, Uitti RJ, Guttman M, Opala G, Jasinska-Myga B, Puschmann A, Nilsson C, Espay AJ, Slawek J, Gutmann L, Boeve BF, Boylan K, Stoessl AJ, Ross OA, Maragakis NJ, Van Gerpen J, Gerstenhaber M, Gwinn K, Dawson TM, Isacson O, Marder KS, Clark LN, Przedborski SE, Finkbeiner S, Rothstein JD, Wszolek ZK, Rossor MN, Hardy J (2012) Creation of an open-access, mutation-defined fibroblast resource for neurological disease research. PLoS ONE 7(8):e43099. doi:10.1371/journal.pone.0043099

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Gandelman M, Peluffo H, Beckman JS, Cassina P, Barbeito L (2010) Extracellular ATP and the P2X7 receptor in astrocyte-mediated motor neuron death: implications for amyotrophic lateral sclerosis. J Neuroinflammation 7:33. doi:10.1186/1742-2094-7-33

    PubMed Central  PubMed  Google Scholar 

  136. Scorisa JM, Duobles T, Oliveira GP, Maximino JR, Chadi G (2010) The review of the methods to obtain non-neuronal cells to study glial influence on amyotrophic lateral sclerosis pathophysiology at molecular level in vitro. Acta Cir Bras Soc Brasileira Desenvolvimento Pesqui Cir 25(3):281–289

    Google Scholar 

  137. Ciccarelli R, D'Alimonte I, Santavenere C, D'Auro M, Ballerini P, Nargi E, Buccella S, Nicosia S, Folco G, Caciagli F, Di Iorio P (2004) Cysteinyl-leukotrienes are released from astrocytes and increase astrocyte proliferation and glial fibrillary acidic protein via cys-LT1 receptors and mitogen-activated protein kinase pathway. Eur J Neurosci 20(6):1514–1524. doi:10.1111/j.1460-9568.2004.03613.x

    PubMed  Google Scholar 

  138. Sargsyan SA, Blackburn DJ, Barber SC, Monk PN, Shaw PJ (2009) Mutant SOD1 G93A microglia have an inflammatory phenotype and elevated production of MCP-1. Neuroreport 20(16):1450–1455. doi:10.1097/WNR.0b013e328331e8fa

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Hensley K, Abdel-Moaty H, Hunter J, Mhatre M, Mou S, Nguyen K, Potapova T, Pye QN, Qi M, Rice H, Stewart C, Stroukoff K, West M (2006) Primary glia expressing the G93A-SOD1 mutation present a neuroinflammatory phenotype and provide a cellular system for studies of glial inflammation. J Neuroinflammation 3:2. doi:10.1186/1742-2094-3-2

    PubMed Central  PubMed  Google Scholar 

  140. Caragounis A, Price KA, Soon CP, Filiz G, Masters CL, Li QX, Crouch PJ, White AR (2010) Zinc induces depletion and aggregation of endogenous TDP-43. Free Radic Biol Med 48(9):1152–1161. doi:10.1016/j.freeradbiomed.2010.01.035

    CAS  PubMed  Google Scholar 

  141. Palmer TD, Schwartz PH, Taupin P, Kaspar B, Stein SA, Gage FH (2001) Cell culture. Progenitor cells from human brain after death. Nature 411(6833):42–43. doi:10.1038/35075141

    CAS  PubMed  Google Scholar 

  142. Palma E, Inghilleri M, Conti L, Deflorio C, Frasca V, Manteca A, Pichiorri F, Roseti C, Torchia G, Limatola C, Grassi F, Miledi R (2011) Physiological characterization of human muscle acetylcholine receptors from ALS patients. Proc Natl Acad Sci U S A 108(50):20184–20188. doi:10.1073/pnas.1117975108

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Guo X, Gonzalez M, Stancescu M, Vandenburgh HH, Hickman JJ (2011) Neuromuscular junction formation between human stem cell-derived motoneurons and human skeletal muscle in a defined system. Biomaterials 32(36):9602–9611. doi:10.1016/j.biomaterials.2011.09.014

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Pradat PF, Bruneteau G, Gonzalez de Aguilar JL, Dupuis L, Jokic N, Salachas F, Le Forestier N, Echaniz-Laguna A, Dubourg O, Hauw JJ, Tranchant C, Loeffler JP, Meininger V (2007) Muscle Nogo-A expression is a prognostic marker in lower motor neuron syndromes. Ann Neurol 62(1):15–20. doi:10.1002/ana.21122

    CAS  PubMed  Google Scholar 

  145. Yin F, Ye F, Tan L, Liu K, Xuan Z, Zhang J, Wang W, Zhang Y, Jiang X, Zhang DY (2012) Alterations of signaling pathways in muscle tissues of patients with amyotrophic lateral sclerosis. Muscle Nerve 46(6):861–870. doi:10.1002/mus.23411

    PubMed  Google Scholar 

  146. Krasnianski A, Deschauer M, Neudecker S, Gellerich FN, Muller T, Schoser BG, Krasnianski M, Zierz S (2005) Mitochondrial changes in skeletal muscle in amyotrophic lateral sclerosis and other neurogenic atrophies. Brain J Neurol 128(Pt 8):1870–1876. doi:10.1093/brain/awh540

    Google Scholar 

  147. Moxley RT, Griggs RC, Forbes GB, Goldblatt D, Donohoe K (1983) Influence of muscle wasting on oral glucose tolerance testing. Clin Sci (London, England: 1979) 64(6):601–609

    CAS  Google Scholar 

  148. Onesto E, Rusmini P, Crippa V, Ferri N, Zito A, Galbiati M, Poletti A (2011) Muscle cells and motoneurons differentially remove mutant SOD1 causing familial amyotrophic lateral sclerosis. J Neurochem 118(2):266–280. doi:10.1111/j.1471-4159.2011.07298.x

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Goos M, Zech WD, Jaiswal MK, Balakrishnan S, Ebert S, Mitchell T, Carri MT, Keller BU, Nau R (2007) Expression of a Cu, Zn superoxide dismutase typical for familial amyotrophic lateral sclerosis increases the vulnerability of neuroblastoma cells to infectious injury. BMC Infect Dis 7:131. doi:10.1186/1471-2334-7-131

    PubMed Central  PubMed  Google Scholar 

  150. Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H, Przedborski S (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 10(5):615–622. doi:10.1038/nn1876

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Bilsland LG, Nirmalananthan N, Yip J, Greensmith L, Duchen MR (2008) Expression of mutant SOD1 in astrocytes induces functional deficits in motoneuron mitochondria. J Neurochem 107(5):1271–1283. doi:10.1111/j.1471-4159.2008.05699.x

    CAS  PubMed  Google Scholar 

  152. Vargas MR, Johnson DA, Sirkis DW, Messing A, Johnson JA (2008) Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis. J Neurosci Official J Soc Neurosci 28(50):13574–13581. doi:10.1523/jneurosci.4099-08.2008

    CAS  Google Scholar 

  153. Barbeito AG, Martinez-Palma L, Vargas MR, Pehar M, Manay N, Beckman JS, Barbeito L, Cassina P (2010) Lead exposure stimulates VEGF expression in the spinal cord and extends survival in a mouse model of ALS. Neurobiol Dis 37(3):574–580. doi:10.1016/j.nbd.2009.11.007

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Miquel E, Cassina A, Martinez-Palma L, Bolatto C, Trias E, Gandelman M, Radi R, Barbeito L, Cassina P (2012) Modulation of astrocytic mitochondrial function by dichloroacetate improves survival and motor performance in inherited amyotrophic lateral sclerosis. PLoS ONE 7(4):e34776. doi:10.1371/journal.pone.0034776

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Sun H, Knippenberg S, Thau N, Ragancokova D, Korner S, Huang D, Dengler R, Dohler K, Petri S (2013) Therapeutic potential of N-acetyl-glucagon-like peptide-1 in primary motor neuron cultures derived from non-transgenic and SOD1-G93A ALS Mice. Cell Mol Neurobiol 33(3):347–357. doi:10.1007/s10571-012-9900-9

    CAS  PubMed  Google Scholar 

  156. Lasiene J, Yamanaka K (2011) Glial cells in amyotrophic lateral sclerosis. Neurol Res Int 2011:718987. doi:10.1155/2011/718987

    PubMed Central  PubMed  Google Scholar 

  157. Yamanaka K, Chun SJ, Boillee S, Fujimori-Tonou N, Yamashita H, Gutmann DH, Takahashi R, Misawa H, Cleveland DW (2008) Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat Neurosci 11(3):251–253. doi:10.1038/nn2047

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Clement AM, Nguyen MD, Roberts EA, Garcia ML, Boillee S, Rule M, McMahon AP, Doucette W, Siwek D, Ferrante RJ, Brown RH Jr, Julien JP, Goldstein LS, Cleveland DW (2003) Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302(5642):113–117. doi:10.1126/science.1086071

    CAS  PubMed  Google Scholar 

  159. Boillee S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, Kollias G, Cleveland DW (2006) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312(5778):1389–1392

    CAS  PubMed  Google Scholar 

  160. Turner MR, Cagnin A, Turkheimer FE, Miller CC, Shaw CE, Brooks DJ, Leigh PN, Banati RB (2004) Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol Dis 15(3):601–609. doi:10.1016/j.nbd.2003.12.012

    CAS  PubMed  Google Scholar 

  161. Philips T, Bento-Abreu A, Nonneman A, Haeck W, Staats K, Geelen V, Hersmus N, Kusters B, Van Den Bosch L, Van Damme P, Richardson WD, Robberecht W (2013) Oligodendrocyte dysfunction in the pathogenesis of amyotrophic lateral sclerosis. Brain J Neurol 136(Pt 2):471–482. doi:10.1093/brain/aws339

    Google Scholar 

  162. Kang SH, Li Y, Fukaya M, Lorenzini I, Cleveland DW, Ostrow LW, Rothstein JD, Bergles DE (2013) Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat Neurosci 16(5):571–579. doi:10.1038/nn.3357

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Audet JN, Gowing G, Paradis R, Soucy G, Julien JP (2012) Ablation of proliferating cells in the CNS exacerbates motor neuron disease caused by mutant superoxide dismutase. PLoS ONE 7(4):e34932. doi:10.1371/journal.pone.0034932

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Lobsiger CS, Boillee S, McAlonis-Downes M, Khan AM, Feltri ML, Yamanaka K, Cleveland DW (2009) Schwann cells expressing dismutase active mutant SOD1 unexpectedly slow disease progression in ALS mice. Proc Natl Acad Sci U S A 106(11):4465–4470. doi:10.1073/pnas.0813339106

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Wang L, Pytel P, Feltri ML, Wrabetz L, Roos RP (2012) Selective knockdown of mutant SOD1 in Schwann cells ameliorates disease in G85R mutant SOD1 transgenic mice. Neurobiol Dis 48(1):52–57. doi:10.1016/j.nbd.2012.05.014

    PubMed  Google Scholar 

  166. Di Giorgio FP, Carrasco MA, Siao MC, Maniatis T, Eggan K (2007) Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat Neurosci 10(5):608–614

    PubMed Central  PubMed  Google Scholar 

  167. Raoul C, Estevez AG, Nishimune H, Cleveland DW, deLapeyriere O, Henderson CE, Haase G, Pettmann B (2002) Motoneuron death triggered by a specific pathway downstream of Fas. potentiation by ALS-linked SOD1 mutations. Neuron 35(6):1067–1083

    CAS  PubMed  Google Scholar 

  168. Ilieva H, Polymenidou M, Cleveland DW (2009) Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J Cell Biol 187(6):761–772. doi:10.1083/jcb.200908164

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Pramatarova A, Laganiere J, Roussel J, Brisebois K, Rouleau GA (2001) Neuron-specific expression of mutant superoxide dismutase 1 in transgenic mice does not lead to motor impairment. J Neurosci Off J Soc Neurosci 21(10):3369–3374

    CAS  Google Scholar 

  170. Yamanaka K, Boillee S, Roberts EA, Garcia ML, McAlonis-Downes M, Mikse OR, Cleveland DW, Goldstein LS (2008) Mutant SOD1 in cell types other than motor neurons and oligodendrocytes accelerates onset of disease in ALS mice. Proc Natl Acad Sci U S A 105(21):7594–7599. doi:10.1073/pnas.0802556105

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Gong YH, Parsadanian AS, Andreeva A, Snider WD, Elliott JL (2000) Restricted expression of G86R Cu/Zn superoxide dismutase in astrocytes results in astrocytosis but does not cause motoneuron degeneration. J Neurosci Off J Soc Neurosci 20(2):660–665

    CAS  Google Scholar 

  172. Skorupa A, King MA, Aparicio IM, Dussmann H, Coughlan K, Breen B, Kieran D, Concannon CG, Marin P, Prehn JH (2012) Motoneurons secrete angiogenin to induce RNA cleavage in astroglia. J Neurosci Off J Soc Neurosci 32(15):5024–5038. doi:10.1523/jneurosci.6366-11.2012

    CAS  Google Scholar 

  173. Philips T, Robberecht W (2011) Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol 10(3):253–263. doi:10.1016/s1474-4422(11)70015-1

    CAS  PubMed  Google Scholar 

  174. Fischer LR, Culver DG, Tennant P, Davis AA, Wang M, Castellano-Sanchez A, Khan J, Polak MA, Glass JD (2004) Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol 185(2):232–240

    PubMed  Google Scholar 

  175. Dadon-Nachum M, Melamed E, Offen D (2011) The “dying-back” phenomenon of motor neurons in ALS. J Mol Neurosci 43(3):470–477. doi:10.1007/s12031-010-9467-1

    CAS  PubMed  Google Scholar 

  176. Eisen A, Weber M (2001) The motor cortex and amyotrophic lateral sclerosis. Muscle Nerve 24(4):564–573

    CAS  PubMed  Google Scholar 

  177. Belzung C, Leman S, Vourc'h P, Andres CR (2005) Rodent models for autism: a critical review. Drug Discov Today Dis Model 2(2):93–101

    CAS  Google Scholar 

  178. Ni M, Aschner M (2010) Neonatal rat primary microglia: isolation, culturing, and selected applications. Current protocols in toxicology/editorial board, Mahin D Maines (editor-in-chief) [et al.] Chapter 12:Unit 12 17. doi:10.1002/0471140856.tx1217s43

  179. Redler RL, Dokholyan NV (2012) The complex molecular biology of amyotrophic lateral sclerosis (ALS). Prog Mol Biol Transl Sci 107:215–262. doi:10.1016/b978-0-12-385883-2.00002-3

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Sasaki S (2011) Autophagy in spinal cord motor neurons in sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 70(5):349–359. doi:10.1097/NEN.0b013e3182160690

    PubMed  Google Scholar 

  181. Cassina P, Peluffo H, Pehar M, Martinez-Palma L, Ressia A, Beckman JS, Estevez AG, Barbeito L (2002) Peroxynitrite triggers a phenotypic transformation in spinal cord astrocytes that induces motor neuron apoptosis. J Neurosci Res 67(1):21–29

    CAS  PubMed  Google Scholar 

  182. Mahajan SS, Ziff EB (2007) Novel toxicity of the unedited GluR2 AMPA receptor subunit dependent on surface trafficking and increased Ca2 + -permeability. Mol Cell Neurosci 35(3):470–481. doi:10.1016/j.mcn.2007.04.006

    CAS  PubMed Central  PubMed  Google Scholar 

  183. Taghibiglou C, Lu J, Mackenzie IR, Wang YT, Cashman NR (2011) Sterol regulatory element binding protein-1 (SREBP1) activation in motor neurons in excitotoxicity and amyotrophic lateral sclerosis (ALS): Indip, a potential therapeutic peptide. Biochem Biophys Res Commun 413(2):159–163. doi:10.1016/j.bbrc.2011.08.011

    CAS  PubMed  Google Scholar 

  184. Tortarolo M, Crossthwaite AJ, Conforti L, Spencer JP, Williams RJ, Bendotti C, Rattray M (2004) Expression of SOD1 G93A or wild-type SOD1 in primary cultures of astrocytes down-regulates the glutamate transporter GLT-1: lack of involvement of oxidative stress. J Neurochem 88(2):481–493

    CAS  PubMed  Google Scholar 

  185. Mori K, Weng SM, Arzberger T, May S, Rentzsch K, Kremmer E, Schmid B, Kretzschmar HA, Cruts M, Van Broeckhoven C, Haass C, Edbauer D (2013) The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339(6125):1335–1338. doi:10.1126/science.1232927

    CAS  PubMed  Google Scholar 

  186. Xu Z, Poidevin M, Li X, Li Y, Shu L, Nelson DL, Li H, Hales CM, Gearing M, Wingo TS, Jin P (2013) Expanded GGGGCC repeat RNA associated with amyotrophic lateral sclerosis and frontotemporal dementia causes neurodegeneration. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1219643110

    Google Scholar 

  187. Silani V, Braga M, Ciammola A, Cardin V, Scarlato G (2000) Motor neurones in culture as a model to study ALS. J Neurol 247(Suppl 1):I28–I36

    PubMed  Google Scholar 

  188. Belanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14(6):724–738. doi:10.1016/j.cmet.2011.08.016

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Association ARSLA (Association pour la Recherche sur la Slcérose Latérale Amyotrophique) for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Veyrat-Durebex.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veyrat-Durebex, C., Corcia, P., Dangoumau, A. et al. Advances in Cellular Models to Explore the Pathophysiology of Amyotrophic Lateral Sclerosis. Mol Neurobiol 49, 966–983 (2014). https://doi.org/10.1007/s12035-013-8573-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8573-9

Keywords

Navigation