Skip to main content
Log in

BIG1, a Brefeldin A-Inhibited Guanine Nucleotide-Exchange Factor, Is Required for GABA-Gated Cl Influx Through Regulation of GABAA Receptor Trafficking

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

GABAA receptors (GABAARs) mediate the majority of fast synaptic inhibition. Trafficking regulation and protein–protein interactions that maintain the appropriate number of GABAARs at the cell surface are considered to be important mechanisms for controlling the strength of synaptic inhibition. Here, we report that BIG1, a brefeldin A (BFA)-inhibited guanine nucleotide-exchange factor (GEF) which has a known role in vesicle trafficking, is a new binding partner of GABAARs. Treatment of neurons with BFA, an uncompetitive inhibitor of BIG1 GEF activity, or depletion of BIG1 by small RNA interference (siRNA) significantly decreased GABAARs at the neuronal surface and suppressed GABA-gated influx of chloride ions. Over-expression of HA-tagged BIG1-E793K, a dominant-negative mutant, also significantly decreased GABAARs at the neuronal surface, but had no effect on the total amount of GABAARs. Inhibition of GABAAR endocytosis by muscimol increased both GABAARs and BIG1 at the neuronal surface in a time-dependent fashion, and this increase could be abolished by bicuculline. Finally, depletion of BIG1 by siRNA inhibited the muscimol-stimulated increase of GABAARs. Those data suggest an important function of BIG1 in trafficking of GABAARs to the cell surface through its GEF activity. Thus, we identify an important role of BIG1 in modulating GABA-gated Cl influx through the regulation of cell surface expression of GABAARs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jacob TC, Moss SJ, Jurd R (2008) GABA(A) receptor trafficking and its role in the dynamic modulation of neuronal inhibition. Nat Rev Neurosci 9(5):331–343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Vithlani M, Terunuma M, Moss SJ (2011) The dynamic modulation of GABA(A) receptor trafficking and its role in regulating the plasticity of inhibitory synapses. Physiol Rev 91(3):1009–1022

    Article  CAS  PubMed  Google Scholar 

  3. Fritschy JM (2008) Epilepsy, E/I balance and GABA(A) receptor plasticity. Front Mol Neurosci 1:5

    Article  PubMed Central  PubMed  Google Scholar 

  4. Goodkin HP, Joshi S, Mtchedlishvili Z, Brar J, Kapur J (2008) Subunit-specific trafficking of GABA(A) receptors during status epilepticus. J Neurosci 28(10):2527–2538

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Kalueff AV, Nutt DJ (2007) Role of GABA in anxiety and depression. Depress Anxiety 24(7):495–517

    Article  CAS  PubMed  Google Scholar 

  6. Charych EI, Liu F, Moss SJ, Brandon NJ (2009) GABA(A) receptors and their associated proteins: implications in the etiology and treatment of schizophrenia and related disorders. Neuropharmacology 57(5–6):481–495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Kumar S, Fleming RL, Morrow AL (2004) Ethanol regulation of gamma-aminobutyric acid A receptors: genomic and nongenomic mechanisms. Pharmacol Ther 101(3):211–226

    Article  CAS  PubMed  Google Scholar 

  8. Knabl J, Witschi R, Hosl K, Reinold H, Zeilhofer UB, Ahmadi S, Brockhaus J, Sergejeva M, Hess A, Brune K, Fritschy JM, Rudolph U, Mohler H, Zeilhofer HU (2008) Reversal of pathological pain through specific spinal GABAA receptor subtypes. Nature 451(7176):330–334

    Article  CAS  PubMed  Google Scholar 

  9. Saliba RS, Michels G, Jacob TC, Pangalos MN, Moss SJ (2007) Activity-dependent ubiquitination of GABA(A) receptors regulates their accumulation at synaptic sites. J Neurosci 27(48):13341–13351

    Article  CAS  PubMed  Google Scholar 

  10. Leil TA, Chen ZW, Chang CS, Olsen RW (2004) GABAA receptor-associated protein traffics GABAA receptors to the plasma membrane in neurons. J Neurosci 24(50):11429–11438

    Article  CAS  PubMed  Google Scholar 

  11. Chen ZW, Chang CS, Leil TA, Olcese R, Olsen RW (2005) GABAA receptor-associated protein regulates GABAA receptor cell-surface number in Xenopus laevis oocytes. Mol Pharmacol 68(1):152–159

    Article  CAS  PubMed  Google Scholar 

  12. Kittler JT, Rostaing P, Schiavo G, Fritschy JM, Olsen R, Triller A, Moss SJ (2001) The subcellular distribution of GABARAP and its ability to interact with NSF suggest a role for this protein in the intracellular transport of GABA(A) receptors. Mol Cell Neurosci 18(1):13–25

    Article  CAS  PubMed  Google Scholar 

  13. Goto H, Terunuma M, Kanematsu T, Misumi Y, Moss SJ, Hirata M (2005) Direct interaction of N-ethylmaleimide-sensitive factor with GABA(A) receptor beta subunits. Mol Cell Neurosci 30(2):197–206

    Article  CAS  PubMed  Google Scholar 

  14. Mizokami A, Kanematsu T, Ishibashi H, Yamaguchi T, Tanida I, Takenaka K, Nakayama KI, Fukami K, Takenawa T, Kominami E, Moss SJ, Yamamoto T, Nabekura J, Hirata M (2007) Phospholipase C-related inactive protein is involved in trafficking of gamma2 subunit-containing GABA(A) receptors to the cell surface. J Neurosci 27(7):1692–1701

    Article  CAS  PubMed  Google Scholar 

  15. Kanematsu T, Fujii M, Mizokami A, Kittler JT, Nabekura J, Moss SJ, Hirata M (2007) Phospholipase C-related inactive protein is implicated in the constitutive internalization of GABAA receptors mediated by clathrin and AP2 adaptor complex. J Neurochem 101(4):898–905

    Article  CAS  PubMed  Google Scholar 

  16. Keller CA, Yuan X, Panzanelli P, Martin ML, Alldred M, Sassoe-Pognetto M, Luscher B (2004) The gamma2 subunit of GABA(A) receptors is a substrate for palmitoylation by GODZ. J Neurosci 24(26):5881–5891

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Fang C, Deng L, Keller CA, Fukata M, Fukata Y, Chen G, Luscher B (2006) GODZ-mediated palmitoylation of GABA(A) receptors is required for normal assembly and function of GABAergic inhibitory synapses. J Neurosci 26(49):12758–12768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Beck M, Brickley K, Wilkinson HL, Sharma S, Smith M, Chazot PL, Pollard S, Stephenson FA (2002) Identification, molecular cloning, and characterization of a novel GABAA receptor-associated protein, GRIF-1. J Biol Chem 277(33):30079–30090

    Article  CAS  PubMed  Google Scholar 

  19. Lin YF, Xu X, Cape A, Li S, Li XJ (2010) Huntingtin-associated protein-1 deficiency in orexin-producing neurons impairs neuronal process extension and leads to abnormal behavior in mice. J Biol Chem 285(21):15941–15949

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Kittler JT, Thomas P, Tretter V, Bogdanov YD, Haucke V, Smart TG, Moss SJ (2004) Huntingtin-associated protein 1 regulates inhibitory synaptic transmission by modulating gamma-aminobutyric acid type A receptor membrane trafficking. Proc Natl Acad Sci U S A 101(34):12736–12741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Farhan H, Reiterer V, Kriz A, Hauri HP, Pavelka M, Sitte HH, Freissmuth M (2008) Signal-dependent export of GABA transporter 1 from the ER-Golgi intermediate compartment is specified by a C-terminal motif. J Cell Sci 121(Pt 6):753–761

    Article  CAS  PubMed  Google Scholar 

  22. Charych EI, Yu W, Miralles CP, Serwanski DR, Li X, Rubio M, De Blas AL (2004) The brefeldin A-inhibited GDP/GTP exchange factor 2, a protein involved in vesicular trafficking, interacts with the beta subunits of the GABA receptors. J Neurochem 90(1):173–189

    Article  CAS  PubMed  Google Scholar 

  23. Moss J, Vaughan M (1999) Activation of toxin ADP-ribosyltransferases by eukaryotic ADP-ribosylation factors. Mol Cell Biochem 193(1–2):153–157

    Article  CAS  PubMed  Google Scholar 

  24. Morinaga N, Tsai SC, Moss J, Vaughan M (1996) Isolation of a brefeldin A-inhibited guanine nucleotide-exchange protein for ADP ribosylation factor (ARF) 1 and ARF3 that contains a Sec7-like domain. Proc Natl Acad Sci U S A 93(23):12856–12860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Lowery J, Szul T, Styers M, Holloway Z, Oorschot V, Klumperman J, Sztul E (2013) The Sec7 guanine nucleotide exchange factor GBF1 regulates membrane recruitment of BIG1 and BIG2 guanine nucleotide exchange factors to the trans-Golgi network (TGN). J Biol Chem 288(16):11532–11545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Sheen VL, Ganesh VS, Topcu M, Sebire G, Bodell A, Hill RS, Grant PE, Shugart YY, Imitola J, Khoury SJ, Guerrini R, Walsh CA (2004) Mutations in ARFGEF2 implicate vesicle trafficking in neural progenitor proliferation and migration in the human cerebral cortex. Nat Genet 36(1):69–76

    Article  CAS  PubMed  Google Scholar 

  27. Shen X, Meza-Carmen V, Puxeddu E, Wang G, Moss J, Vaughan M (2008) Interaction of brefeldin A-inhibited guanine nucleotide-exchange protein (BIG) 1 and kinesin motor protein KIF21A. Proc Natl Acad Sci U S A 105(48):18788–18793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Cuitino L, Godoy JA, Farias GG, Couve A, Bonansco C, Fuenzalida M, Inestrosa NC (2010) Wnt-5a modulates recycling of functional GABAA receptors on hippocampal neurons. J Neurosci 30(25):8411–8420

    Article  CAS  PubMed  Google Scholar 

  29. Czondor K, Ellwanger K, Fuchs YF, Lutz S, Gulyas M, Mansuy IM, Hausser A, Pfizenmaier K, Schlett K (2009) Protein kinase D controls the integrity of Golgi apparatus and the maintenance of dendritic arborization in hippocampal neurons. Mol Biol Cell 20(7):2108–2120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Shen X, Hong MS, Moss J, Vaughan M (2007) BIG1, a brefeldin A-inhibited guanine nucleotide-exchange protein, is required for correct glycosylation and function of integrin beta1. Proc Natl Acad Sci U S A 104(4):1230–1235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Hoffman JF, Geibel JP (2005) Fluorescent imaging of Cl in Amphiuma red blood cells: how the nuclear exclusion of Cl affects the plasma membrane potential. Proc Natl Acad Sci U S A 102(3):921–926

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Feng Y, Yu S, Lasell TK, Jadhav AP, Macia E, Chardin P, Melancon P, Roth M, Mitchison T, Kirchhausen T (2003) Exo1: a new chemical inhibitor of the exocytic pathway. Proc Natl Acad Sci U S A 100(11):6469–6474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Chun J, Shapovalova Z, Dejgaard SY, Presley JF, Melancon P (2008) Characterization of class I and II ADP-ribosylation factors (Arfs) in live cells: GDP-bound class II Arfs associate with the ER-Golgi intermediate compartment independently of GBF1. Mol Biol Cell 19(8):3488–3500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Anders N, Jurgens G (2008) Large ARF guanine nucleotide exchange factors in membrane trafficking. Cell Mol Life Sci 65(21):3433–3445

    Article  CAS  PubMed  Google Scholar 

  35. Peyroche A, Paris S, Jackson CL (1996) Nucleotide exchange on ARF mediated by yeast Gea1 protein. Nature 384(6608):479–481

    Article  CAS  PubMed  Google Scholar 

  36. Shinotsuka C, Yoshida Y, Kawamoto K, Takatsu H, Nakayama K (2002) Overexpression of an ADP-ribosylation factor-guanine nucleotide exchange factor, BIG2, uncouples brefeldin A-induced adaptor protein-1 coat dissociation and membrane tubulation. J Biol Chem 277(11):9468–9473

    Article  CAS  PubMed  Google Scholar 

  37. Kittler JT, Delmas P, Jovanovic JN, Brown DA, Smart TG, Moss SJ (2000) Constitutive endocytosis of GABAA receptors by an association with the adaptin AP2 complex modulates inhibitory synaptic currents in hippocampal neurons. J Neurosci 20(21):7972–7977

    CAS  PubMed  Google Scholar 

  38. Porcher C, Hatchett C, Longbottom RE, McAinch K, Sihra TS, Moss SJ, Thomson AM, Jovanovic JN (2011) Positive feedback regulation between gamma-aminobutyric acid type A (GABA(A)) receptor signaling and brain-derived neurotrophic factor (BDNF) release in developing neurons. J Biol Chem 286(24):21667–21677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Eshaq RS, Stahl LD, Stone R 2nd, Smith SS, Robinson LC, Leidenheimer NJ (2010) GABA acts as a ligand chaperone in the early secretory pathway to promote cell surface expression of GABAA receptors. Brain Res 1346:1–13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Marandi N, Konnerth A, Garaschuk O (2002) Two-photon chloride imaging in neurons of brain slices. Pflugers Arch 445(3):357–365

    Article  CAS  PubMed  Google Scholar 

  41. Coskun T, Baumgartner HK, Chu S, Montrose MH (2002) Coordinated regulation of gastric chloride secretion with both acid and alkali secretion. Am J Physiol Gastrointest Liver Physiol 283(5):G1147–1155

    CAS  PubMed  Google Scholar 

  42. Fukura H, Komiya Y, Igarashi M (1996) Signaling pathway downstream of GABAA receptor in the growth cone. J Neurochem 67(4):1426–1434

    Article  CAS  PubMed  Google Scholar 

  43. Dallwig R, Deitmer JW, Backus KH (1999) On the mechanism of GABA-induced currents in cultured rat cortical neurons. Pflugers Arch 437(2):289–297

    Article  CAS  PubMed  Google Scholar 

  44. Schwartz RD, Yu X (1995) Optical imaging of intracellular chloride in living brain slices. J Neurosci Methods 62(1–2):185–192

    Article  CAS  PubMed  Google Scholar 

  45. Frech MJ, Deitmer JW, Backus KH (1999) Intracellular chloride and calcium transients evoked by gamma-aminobutyric acid and glycine in neurons of the rat inferior colliculus. J Neurobiol 40(3):386–396

    Article  CAS  PubMed  Google Scholar 

  46. Bevensee MO, Apkon M, Boron WF (1997) Intracellular pH regulation in cultured astrocytes from rat hippocampus. II. Electrogenic Na/HCO3 cotransport. J Gen Physiol 110(4):467–483

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The anti-BIG1 antibody and BIG1 plasmids were kindly provided by Dr. Martha Vaughan and Dr. Joel Moss from the Cardiovascular-Pulmonary Branch of the National Heart, Lung, and Blood Institute, National Institutes of Health. This study was supported by National Natural Science Foundation of China (nos. 31070924 and 81173056) and the Research Fund for the Doctoral Program of Higher Education of China (no. 20100171110052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Shen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

The blank control was analyzed with the vehicle (Krebs-HEPES) in cultured hippocampal neurons (9 DIV) labeled with the Cl sensitive dye MQAE. Live cell images were taken each 5 seconds. (AVI 3407 kb)

Cl influx stimulated by GABA (100 mM) in cultured hippocampal neurons (9 DIV) labeled with MQAE was analyzed by a confocal microscope (Zeiss 710). Live cell images were taken each 5 seconds. (AVI 957 kb)

Cultured hippocampal neurons (9 DIV) were treated with 5 μg/ml BFA for 5 min, then subjected to the MQAE paradigm to monitor GABA stimulated (100 mM) Cl influx. Live cell images were taken each 5 seconds. (AVI 5107 kb)

Cultured hippocampal neurons (9 DIV) were treated with 5 μg/ml BFA for 30 min, then subjected to the MQAE paradigm to monitor GABA stimulated (100 mM) Cl influx. Live cell images were taken each 5 seconds. (AVI 1599 kb)

Cultured hippocampal neurons (9 DIV) were treated with 100 μM bicuculine for 15 min, and then subjected to the MQAE paradigm to monitor GABA stimulated (100 mM) Cl influx. Live cell images were taken each 5 seconds. (AVI 1693 kb)

The blank control was analyzed with the vehicle (Krebs-HEPES) in SHSY-5Y cells transfected with negative control siRNA (NC). Live cell images were taken each 5 seconds. (AVI 61 kb)

Cl influx stimulated by GABA (100 mM) in SHSY-5Y cells transfected with negative control siRNA (NC) was analyzed by a confocal microscope (Zeiss 710). Live cell images were taken each 5 seconds. (AVI 55 kb)

Cl influx stimulated by GABA (100 mM) in SHSY-5Y cells transfected with BIG1 siRNA (G05) was analyzed by a confocal microscope (Zeiss 710). Live cell images were taken each 5 seconds. (AVI 57 kb)

Fig. S1

Cellular localization of BIG1 and GM130. Hippocampal neurons were fixed and permeabilized, followed by incubation with anti-BIG1 and anti-GM130 antibodies. Images were acquired using a laser scanning confocal microscopy (scale bar, 20 μm). (JPEG 69 kb)

High resolution image (TIFF 422 kb)

Fig. S2

Effect of BFA treatment on GABA A Rs expression in neurons. Cultured hippocampal neurons (9 DIV) were treated with vehicle (DMSO), or with 5 μg/ml BFA for 30 min. The neurons were fixed, permeabilized, and reacted with anti-GABAARβ2,3 antibodies. Images were acquired using a laser scanning confocal microscopy (scale bar, 20 μm). Fluorescent intensity was quantified with ImageJ software (NIH) in a minimum of 20 cells per slide. The experiments were repeated at least three times. (JPEG 142 kb)

High resolution image (TIFF 648 kb)

Fig. S3

Effect of BIG1 depletion on GABA A Rs expression in neurons. Hippocampal neurons (7 DIV) transfected with Cy3 labeled NC siRNA or BIG1 (G05) siRNA were fixed, permeabilized, and reacted with anti-GABAARβ2,3 antibodies. Images were acquired using a laser scanning confocal microscopy (Scale bar, 20 μm). Fluorescent intensity was quantified with ImageJ software (NIH) in a minimum of 20 cells per slide. The experiments were repeated at least three times. (JPEG 249 kb)

High resolution image (TIFF 1261 kb)

Fig. S4

Effect of muscimol, bicuculine or BFA on GABA A Rs expression in neurons. Hippocampal neurons (9 DIV) treated with vehicle (DMSO), muscimol alone (50 μM for 15 min; Musc), or bicuculline (100 μM for 10 min; Bic), or bicuculline (100 μM) plus muscimol (50 Μm for 15 min, Musc + Bic,), or BFA (5 μg/ml) plus muscimol (50 μM for 30 min, Musc + BFA). The neurons were fixed, permeabilized, and reacted with anti-GABAARβ2,3 antibodies. Images were acquired using a laser scanning confocal microscopy (Scale bar, 20 μm). Fluorescent intensity was quantified with ImageJ software (NIH) in a minimum of 20 cells per slide. The experiments were repeated at least three times. (JPEG 570 kb)

High resolution image (TIFF 2234 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Chen, S., Yu, Y. et al. BIG1, a Brefeldin A-Inhibited Guanine Nucleotide-Exchange Factor, Is Required for GABA-Gated Cl Influx Through Regulation of GABAA Receptor Trafficking. Mol Neurobiol 49, 808–819 (2014). https://doi.org/10.1007/s12035-013-8558-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8558-8

Keywords

Navigation