Skip to main content

Advertisement

Log in

Glutamatergic Postsynaptic Density Protein Dysfunctions in Synaptic Plasticity and Dendritic Spines Morphology: Relevance to Schizophrenia and Other Behavioral Disorders Pathophysiology, and Implications for Novel Therapeutic Approaches

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Emerging researches point to a relevant role of postsynaptic density (PSD) proteins, such as PSD-95, Homer, Shank, and DISC-1, in the pathophysiology of schizophrenia and autism spectrum disorders. The PSD is a thickness, detectable at electronic microscopy, localized at the postsynaptic membrane of glutamatergic synapses, and made by scaffolding proteins, receptors, and effector proteins; it is considered a structural and functional crossroad where multiple neurotransmitter systems converge, including the dopaminergic, serotonergic, and glutamatergic ones, which are all implicated in the pathophysiology of psychosis. Decreased PSD-95 protein levels have been reported in postmortem brains of schizophrenia patients. Variants of Homer1, a key PSD protein for glutamate signaling, have been associated with schizophrenia symptoms severity and therapeutic response. Mutations in Shank gene have been recognized in autism spectrum disorder patients, as well as reported to be associated to behaviors reminiscent of schizophrenia symptoms when expressed in genetically engineered mice. Here, we provide a critical appraisal of PSD proteins role in the pathophysiology of schizophrenia and autism spectrum disorders. Then, we discuss how antipsychotics may affect PSD proteins in brain regions relevant to psychosis pathophysiology, possibly by controlling synaptic plasticity and dendritic spine rearrangements through the modulation of glutamate-related targets. We finally provide a framework that may explain how PSD proteins might be useful candidates to develop new therapeutic approaches for schizophrenia and related disorders in which there is a need for new biological treatments, especially against some symptom domains, such as negative symptoms, that are poorly affected by current antipsychotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Balu DT, Coyle JT (2011) Neuroplasticity signaling pathways linked to the pathophysiology of schizophrenia. Neurosci Biobehav Rev 35(3):848–870

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Bennett MR (2011) Schizophrenia: susceptibility genes, dendritic-spine pathology and gray matter loss. Progress in neurobiology 95(3):275–300

    CAS  PubMed  Google Scholar 

  3. Van Winkel R, Esquivel G, Kenis G, Wichers M, Collip D, Peerbooms O, Rutten B, Myin-Germeys I, Van Os J (2010) Review: genome-wide findings in schizophrenia and the role of gene-environment interplay. CNS Neurosci Ther 16(5):e185–192

    PubMed  Google Scholar 

  4. Lisman JE, Coyle JT, Green RW, Javitt DC, Benes FM, Heckers S, Grace AA (2008) Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci 31(5):234–242

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Zhang J, Lewis SM, Kuhlman B, Lee AL (2013) Supertertiary structure of the MAGUK core from PSD-95. Structure 21(3):402–413

    CAS  PubMed  Google Scholar 

  6. Kennedy MB (2000) Signal-processing machines at the postsynaptic density. Science 290(5492):750–754

    CAS  PubMed  Google Scholar 

  7. de Bartolomeis A, Fiore G (2004) Postsynaptic density scaffolding proteins at excitatory synapse and disorders of synaptic plasticity: implications for human behavior pathologies. International review of neurobiology 59:221–254

    PubMed  Google Scholar 

  8. Murakoshi H, Yasuda R (2012) Postsynaptic signaling during plasticity of dendritic spines. Trends Neurosci 35(2):135–143

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Boeckers TM (2006) The postsynaptic density. Cell Tissue Res 326(2):409–422

    CAS  PubMed  Google Scholar 

  10. Bayes A, van de Lagemaat LN, Collins MO, Croning MD, Whittle IR, Choudhary JS, Grant SG (2011) Characterization of the proteome, diseases and evolution of the human postsynaptic density. Nat Neurosci 14(1):19–21

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Snyder MA, Gao WJ (2013) NMDA hypofunction as a convergence point for progression and symptoms of schizophrenia. Front Cell Neurosci 7:31

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Coyle JT, Basu A, Benneyworth M, Balu D, Konopaske G (2012) Glutamatergic synaptic dysregulation in schizophrenia: therapeutic implications. Handb Exp Pharmacol 213:267–295

    CAS  PubMed  Google Scholar 

  13. Clinton SM, Meador-Woodruff JH (2004) Abnormalities of the NMDA receptor and associated intracellular molecules in the thalamus in schizophrenia and bipolar disorder. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 29(7):1353–1362

    CAS  Google Scholar 

  14. Clinton SM, Haroutunian V, Davis KL, Meador-Woodruff JH (2003) Altered transcript expression of NMDA receptor-associated postsynaptic proteins in the thalamus of subjects with schizophrenia. Am J Psychiatry 160(6):1100–1109

    PubMed  Google Scholar 

  15. Grabrucker AM (2013) A role for synaptic zinc in ProSAP/Shank PSD scaffold malformation in autism spectrum disorders. Dev Neurobiol. doi:10.1002/dneu.22089

  16. Iasevoli F, Ambesi-Impiombato A, Fiore G, Panariello F, Muscettola G, de Bartolomeis A (2011) Pattern of acute induction of Homer1a gene is preserved after chronic treatment with first- and second-generation antipsychotics: effect of short-term drug discontinuation and comparison with Homer1a-interacting genes. J Psychopharmacol 25(7):875–887

    CAS  PubMed  Google Scholar 

  17. Moutsimilli L, Farley S, El Khoury MA, Chamot C, Sibarita JB, Racine V, El Mestikawy S, Mathieu F, Dumas S, Giros B, Tzavara ET (2008) Antipsychotics increase vesicular glutamate transporter 2 (VGLUT2) expression in thalamolimbic pathways. Neuropharmacology 54(3):497–508

    CAS  PubMed  Google Scholar 

  18. Tomasetti C, Dell’Aversano C, Iasevoli F, de Bartolomeis A (2007) Homer splice variants modulation within cortico-subcortical regions by dopamine D2 antagonists, a partial agonist, and an indirect agonist: implication for glutamatergic postsynaptic density in antipsychotics action. Neuroscience 150(1):144–158

    CAS  PubMed  Google Scholar 

  19. Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, Li Y, Mu Y, Chen G, Yu D, McCarthy S, Sebat J, Gage FH (2011) Modelling schizophrenia using human induced pluripotent stem cells. Nature 473(7346):221–225

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Cahill ME, Xie Z, Day M, Photowala H, Barbolina MV, Miller CA, Weiss C, Radulovic J, Sweatt JD, Disterhoft JF, Surmeier DJ, Penzes P (2009) Kalirin regulates cortical spine morphogenesis and disease-related behavioral phenotypes. Proc Natl Acad Sci U S A 106(31):13058–13063

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Iasevoli F, Fiore G, Cicale M, Muscettola G, de Bartolomeis A (2010) Haloperidol induces higher Homer1a expression than risperidone, olanzapine and sulpiride in striatal sub-regions. Psychiatry Res 177(1–2):255–260

    CAS  PubMed  Google Scholar 

  22. Iasevoli F, Tomasetti C, Marmo F, Bravi D, Arnt J, de Bartolomeis A (2010) Divergent acute and chronic modulation of glutamatergic postsynaptic density genes expression by the antipsychotics haloperidol and sertindole. Psychopharmacol 212(3):329–344

    CAS  Google Scholar 

  23. Hashimoto R, Tankou S, Takeda M, Sawa A (2007) Postsynaptic density: a key convergent site for schizophrenia susceptibility factors and possible target for drug development. Drugs Today (Barc) 43(9):645–654

    CAS  Google Scholar 

  24. Critchlow HM, Maycox PR, Skepper JN, Krylova O (2006) Clozapine and haloperidol differentially regulate dendritic spine formation and synaptogenesis in rat hippocampal neurons. Mol Cell Neurosci 32(4):356–365

    CAS  PubMed  Google Scholar 

  25. Meshul CK, Stallbaumer RK, Taylor B, Janowsky A (1994) Haloperidol-induced morphological changes in striatum are associated with glutamate synapses. Brain research 648(2):181–195

    CAS  PubMed  Google Scholar 

  26. O’Connor JA, Muly EC, Arnold SE, Hemby SE (2007) AMPA receptor subunit and splice variant expression in the DLPFC of schizophrenic subjects and rhesus monkeys chronically administered antipsychotic drugs. Schizophr Res 90(1–3):28–40

    PubMed Central  PubMed  Google Scholar 

  27. Fumagalli F, Frasca A, Racagni G, Riva MA (2008) Dynamic regulation of glutamatergic postsynaptic activity in rat prefrontal cortex by repeated administration of antipsychotic drugs. Mol Pharmacol 73(5):1484–1490

    CAS  PubMed  Google Scholar 

  28. Purkayastha S, Ford J, Kanjilal B, Diallo S, Del Rosario IJ, Neuwirth L, El Idrissi A, Ahmed Z, Wieraszko A, Azmitia EC, Banerjee P (2012) Clozapine functions through the prefrontal cortex serotonin 1A receptor to heighten neuronal activity via calmodulin kinase II-NMDA receptor interactions. J Neurochem 120(3):396–407

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Kim E, Sheng M (2004) PDZ domain proteins of synapses. Nat Rev Neurosci 5(10):771–781

    CAS  PubMed  Google Scholar 

  30. Dosemeci A, Makusky AJ, Jankowska-Stephens E, Yang X, Slotta DJ, Markey SP (2007) Composition of the synaptic PSD-95 complex. Mol Cell Proteom MCP 6(10):1749–1760

    CAS  Google Scholar 

  31. Ricciardi S, Ungaro F, Hambrock M, Rademacher N, Stefanelli G, Brambilla D, Sessa A, Magagnotti C, Bachi A, Giarda E, Verpelli C, Kilstrup-Nielsen C, Sala C, Kalscheuer VM, Broccoli V (2012) CDKL5 ensures excitatory synapse stability by reinforcing NGL-1-PSD95 interaction in the postsynaptic compartment and is impaired in patient iPSC-derived neurons. Nat Cell Biol 14(9):911–923

    CAS  PubMed  Google Scholar 

  32. Steiner P, Higley MJ, Xu W, Czervionke BL, Malenka RC, Sabatini BL (2008) Destabilization of the postsynaptic density by PSD-95 serine 73 phosphorylation inhibits spine growth and synaptic plasticity. Neuron 60(5):788–802

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Nikonenko I, Boda B, Steen S, Knott G, Welker E, Muller D (2008) PSD-95 promotes synaptogenesis and multiinnervated spine formation through nitric oxide signaling. J Cel Biol 183(6):1115–1127

    CAS  Google Scholar 

  34. Macgillavry HD, Song Y, Raghavachari S, Blanpied TA (2013) Nanoscale scaffolding domains within the postsynaptic density concentrate synaptic AMPA receptors. Neuron 78(4):615–622

    CAS  PubMed  Google Scholar 

  35. Zhang J, Vinuela A, Neely MH, Hallett PJ, Grant SG, Miller GM, Isacson O, Caron MG, Yao WD (2007) Inhibition of the dopamine D1 receptor signaling by PSD-95. J Biol Chem 282(21):15778–15789

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Zhang J, Xu TX, Hallett PJ, Watanabe M, Grant SG, Isacson O, Yao WD (2009) PSD-95 uncouples dopamine-glutamate interaction in the D1/PSD-95/NMDA receptor complex. J Neurosci Off J Soc Neurosci 29(9):2948–2960

    CAS  Google Scholar 

  37. Porras G, Berthet A, Dehay B, Li Q, Ladepeche L, Normand E, Dovero S, Martinez A, Doudnikoff E, Martin-Negrier ML, Chuan Q, Bloch B, Choquet D, Boue-Grabot E, Groc L, Bezard E (2012) PSD-95 expression controls L-DOPA dyskinesia through dopamine D1 receptor trafficking. J Clin Investig 122(11):3977–3989

    CAS  PubMed  Google Scholar 

  38. Sun P, Wang J, Gu W, Cheng W, Jin GZ, Friedman E, Zheng J, Zhen X (2009) PSD-95 regulates D1 dopamine receptor resensitization, but not receptor-mediated Gs-protein activation. Cell Res 19(5):612–624

    CAS  PubMed  Google Scholar 

  39. Gerfen CR (1992) The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci 15(4):133–139

    CAS  PubMed  Google Scholar 

  40. Xiao J, Dai R, Negyessy L, Bergson C (2006) Calcyon, a novel partner of clathrin light chain, stimulates clathrin-mediated endocytosis. J Biol Chem 281(22):15182–15193

    CAS  PubMed  Google Scholar 

  41. Clinton SM, Ibrahim HM, Frey KA, Davis KL, Haroutunian V, Meador-Woodruff JH (2005) Dopaminergic abnormalities in select thalamic nuclei in schizophrenia: involvement of the intracellular signal integrating proteins calcyon and spinophilin. Am J Psychiatry 162(10):1859–1871

    PubMed  Google Scholar 

  42. Koh PO, Bergson C, Undie AS, Goldman-Rakic PS, Lidow MS (2003) Up-regulation of the D1 dopamine receptor-interacting protein, calcyon, in patients with schizophrenia. Arch Gen Psychiatr 60(3):311–319

    CAS  PubMed  Google Scholar 

  43. Ha CM, Park D, Han JK, Jang JI, Park JY, Hwang EM, Seok H, Chang S (2012) Calcyon forms a novel ternary complex with dopamine D1 receptor through PSD-95 protein and plays a role in dopamine receptor internalization. J Biol Chem 287(38):31813–31822

    CAS  PubMed  Google Scholar 

  44. Fischer R, Fotin-Mleczek M, Hufnagel H, Brock R (2005) Break on through to the other side-biophysics and cell biology shed light on cell-penetrating peptides. Chembiochem 6(12):2126–2142

    CAS  PubMed  Google Scholar 

  45. Cao C, Rioult-Pedotti MS, Migani P, Yu CJ, Tiwari R, Parang K, Spaller MR, Goebel DJ, Marshall J (2013) Impairment of TrkB-PSD-95 signaling in Angelman syndrome. PLoS Biol 11(2):e1001478

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Abbas AI, Yadav PN, Yao WD, Arbuckle MI, Grant SG, Caron MG, Roth BL (2009) PSD-95 is essential for hallucinogen and atypical antipsychotic drug actions at serotonin receptors. J Neurosci Off J Soc Neurosci 29(22):7124–7136

    CAS  Google Scholar 

  47. du Bois TM, Newell KA, Huang XF (2012) Perinatal phencyclidine treatment alters neuregulin 1/erbB4 expression and activation in later life. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol 22(5):356–363

    Google Scholar 

  48. Hermes G, Li N, Duman C, Duman R (2011) Post-weaning chronic social isolation produces profound behavioral dysregulation with decreases in prefrontal cortex synaptic-associated protein expression in female rats. Physiol Behav 104(2):354–359

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Clinton SM, Haroutunian V, Meador-Woodruff JH (2006) Up-regulation of NMDA receptor subunit and post-synaptic density protein expression in the thalamus of elderly patients with schizophrenia. J Neurochem 98(4):1114–1125

    CAS  PubMed  Google Scholar 

  50. Kristiansen LV, Beneyto M, Haroutunian V, Meador-Woodruff JH (2006) Changes in NMDA receptor subunits and interacting PSD proteins in dorsolateral prefrontal and anterior cingulate cortex indicate abnormal regional expression in schizophrenia. Mol Psychiatry 11(8):737–747, 705

    CAS  PubMed  Google Scholar 

  51. Funk AJ, Rumbaugh G, Harotunian V, McCullumsmith RE, Meador-Woodruff JH (2009) Decreased expression of NMDA receptor-associated proteins in frontal cortex of elderly patients with schizophrenia. NeuroReport 20(11):1019–1022

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Toro C, Deakin JF (2005) NMDA receptor subunit NRI and postsynaptic protein PSD-95 in hippocampus and orbitofrontal cortex in schizophrenia and mood disorder. Schizophr Res 80(2–3):323–330

    PubMed  Google Scholar 

  53. Kristiansen LV, Patel SA, Haroutunian V, Meador-Woodruff JH (2010) Expression of the NR2B-NMDA receptor subunit and its Tbr-1/CINAP regulatory proteins in postmortem brain suggest altered receptor processing in schizophrenia. Synapse 64(7):495–502

    CAS  PubMed  Google Scholar 

  54. Hahn CG, Wang HY, Cho DS, Talbot K, Gur RE, Berrettini WH, Bakshi K, Kamins J, Borgmann-Winter KE, Siegel SJ, Gallop RJ, Arnold SE (2006) Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. Nat Med 12(7):824–828

    CAS  PubMed  Google Scholar 

  55. Barros CS, Calabrese B, Chamero P, Roberts AJ, Korzus E, Lloyd K, Stowers L, Mayford M, Halpain S, Muller U (2009) Impaired maturation of dendritic spines without disorganization of cortical cell layers in mice lacking NRG1/ErbB signaling in the central nervous system. Proc Natl Acad Sci U S A 106(11):4507–4512

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Qiu C, Tarrant MK, Choi SH, Sathyamurthy A, Bose R, Banjade S, Pal A, Bornmann WG, Lemmon MA, Cole PA, Leahy DJ (2008) Mechanism of activation and inhibition of the HER4/ErbB4 kinase. Structure 16(3):460–467

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Ferrer I, Martinez A, Boluda S, Parchi P, Barrachina M (2008) Brain banks: benefits, limitations and cautions concerning the use of post-mortem brain tissue for molecular studies. Cell Tissue bank 9(3):181–194

    CAS  PubMed  Google Scholar 

  58. Pandey GN, Dwivedi Y (2010) What can post-mortem studies tell us about the pathoetiology of suicide? Futur Neurol 5(5):701–720

    Google Scholar 

  59. Feyder M, Karlsson RM, Mathur P, Lyman M, Bock R, Momenan R, Munasinghe J, Scattoni ML, Ihne J, Camp M, Graybeal C, Strathdee D, Begg A, Alvarez VA, Kirsch P, Rietschel M, Cichon S, Walter H, Meyer-Lindenberg A, Grant SG, Holmes A (2010) Association of mouse Dlg4 (PSD-95) gene deletion and human DLG4 gene variation with phenotypes relevant to autism spectrum disorders and Williams’ syndrome. Am J Psychiatry 167(12):1508–1517

    PubMed Central  PubMed  Google Scholar 

  60. Kim KC, Kim P, Go HS, Choi CS, Park JH, Kim HJ, Jeon SJ, Dela Pena IC, Han SH, Cheong JH, Ryu JH, Shin CY (2013) Male-specific alteration in excitatory post-synaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder. J Neurochem 124(6):832–843

    CAS  PubMed  Google Scholar 

  61. Baron-Cohen S, Lombardo MV, Auyeung B, Ashwin E, Chakrabarti B, Knickmeyer R (2011) Why are autism spectrum conditions more prevalent in males? PLoS Biol 9(6):e1001081

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Sato D, Lionel AC, Leblond CS, Prasad A, Pinto D, Walker S, O’Connor I, Russell C, Drmic IE, Hamdan FF, Michaud JL, Endris V, Roeth R, Delorme R, Huguet G, Leboyer M, Rastam M, Gillberg C, Lathrop M, Stavropoulos DJ, Anagnostou E, Weksberg R, Fombonne E, Zwaigenbaum L, Fernandez BA, Roberts W, Rappold GA, Marshall CR, Bourgeron T, Szatmari P, Scherer SW (2012) SHANK1 deletions in males with autism spectrum disorder. Am J Hum Genet 90(5):879–887

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Tsai NP, Wilkerson JR, Guo W, Maksimova MA, DeMartino GN, Cowan CW, Huber KM (2012) Multiple autism-linked genes mediate synapse elimination via proteasomal degradation of a synaptic scaffold PSD-95. Cell 151(7):1581–1594

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Abi-Dargham A (2003) Probing cortical dopamine function in schizophrenia: what can D1 receptors tell us? World Psychiatry 2(3):166–171

    PubMed Central  PubMed  Google Scholar 

  65. Shiraishi-Yamaguchi Y, Furuichi T (2007) The Homer family proteins. Genome Biol 8(2):206

    PubMed Central  PubMed  Google Scholar 

  66. Cao F, Zhang H, Feng J, Gao C, Li S (2013) Association study of three microsatellite polymorphisms located in introns 1, 8, and 9 of DISC1 with schizophrenia in the Chinese Han population. Genet Test Mol Biomarkers 17(5):407–411

    CAS  PubMed  Google Scholar 

  67. Ango F, Prezeau L, Muller T, Tu JC, Xiao B, Worley PF, Pin JP, Bockaert J, Fagni L (2001) Agonist-independent activation of metabotropic glutamate receptors by the intracellular protein Homer. Nature 411(6840):962–965

    CAS  PubMed  Google Scholar 

  68. Tu JC, Xiao B, Yuan JP, Lanahan AA, Leoffert K, Li M, Linden DJ, Worley PF (1998) Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron 21(4):717–726

    CAS  PubMed  Google Scholar 

  69. Chen X, Vinade L, Leapman RD, Petersen JD, Nakagawa T, Phillips TM, Sheng M, Reese TS (2005) Mass of the postsynaptic density and enumeration of three key molecules. Proc Natl Acad Sci U S A 102(32):11551–11556

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Cheng MC, Lu CL, Luu SU, Tsai HM, Hsu SH, Chen TT, Chen CH (2010) Genetic and functional analysis of the DLG4 gene encoding the post-synaptic density protein 95 in schizophrenia. PloS ONE 5(12):e15107

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Sala C, Piech V, Wilson NR, Passafaro M, Liu G, Sheng M (2001) Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron 31(1):115–130

    CAS  PubMed  Google Scholar 

  72. Sala C, Futai K, Yamamoto K, Worley PF, Hayashi Y, Sheng M (2003) Inhibition of dendritic spine morphogenesis and synaptic transmission by activity-inducible protein Homer1a. J Neurosci Off J Soc Neurosci 23(15):6327–6337

    CAS  Google Scholar 

  73. Inoue Y, Udo H, Inokuchi K, Sugiyama H (2007) Homer1a regulates the activity-induced remodeling of synaptic structures in cultured hippocampal neurons. Neuroscience 150(4):841–852

    CAS  PubMed  Google Scholar 

  74. Ueta Y, Yamamoto R, Sugiura S, Inokuchi K, Kato N (2008) Homer 1a suppresses neocortex long-term depression in a cortical layer-specific manner. J Neurophysiol 99(2):950–957

    PubMed  Google Scholar 

  75. Ronesi JA, Huber KM (2008) Homer interactions are necessary for metabotropic glutamate receptor-induced long-term depression and translational activation. J Neurosci Off J Soc Neurosci 28(2):543–547

    CAS  Google Scholar 

  76. Fujiyama K, Kajii Y, Hiraoka S, Nishikawa T (2003) Differential regulation by stimulants of neocortical expression of mrt1, arc, and homer1a mRNA in the rats treated with repeated methamphetamine. Synapse 49(3):143–149

    CAS  PubMed  Google Scholar 

  77. Fourgeaud L, Mato S, Bouchet D, Hemar A, Worley PF, Manzoni OJ (2004) A single in vivo exposure to cocaine abolishes endocannabinoid-mediated long-term depression in the nucleus accumbens. J Neurosci Off J Soc Neurosci 24(31):6939–6945

    CAS  Google Scholar 

  78. Cochran SM, Fujimura M, Morris BJ, Pratt JA (2002) Acute and delayed effects of phencyclidine upon mRNA levels of markers of glutamatergic and GABAergic neurotransmitter function in the rat brain. Synapse 46(3):206–214

    CAS  PubMed  Google Scholar 

  79. Iasevoli F, Polese D, Ambesi-Impiombato A, Muscettola G, de Bartolomeis A (2007) Ketamine-related expression of glutamatergic postsynaptic density genes: possible implications in psychosis. Neurosci Lett 416(1):1–5

    CAS  PubMed  Google Scholar 

  80. Chiba S, Hashimoto R, Hattori S, Yohda M, Lipska B, Weinberger DR, Kunugi H (2006) Effect of antipsychotic drugs on DISC1 and dysbindin expression in mouse frontal cortex and hippocampus. J Neural Transm 113(9):1337–1346

    CAS  PubMed  Google Scholar 

  81. Clapcote SJ, Lipina TV, Millar JK, Mackie S, Christie S, Ogawa F, Lerch JP, Trimble K, Uchiyama M, Sakuraba Y, Kaneda H, Shiroishi T, Houslay MD, Henkelman RM, Sled JG, Gondo Y, Porteous DJ, Roder JC (2007) Behavioral phenotypes of Disc1 missense mutations in mice. Neuron 54(3):387–402

    CAS  PubMed  Google Scholar 

  82. Hu JH, Park JM, Park S, Xiao B, Dehoff MH, Kim S, Hayashi T, Schwarz MK, Huganir RL, Seeburg PH, Linden DJ, Worley PF (2010) Homeostatic scaling requires group I mGluR activation mediated by Homer1a. Neuron 68(6):1128–1142

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Szumlinski KK, Kalivas PW, Worley PF (2006) Homer proteins: implications for neuropsychiatric disorders. Curr Opin Neurobiol 16(3):251–257

    CAS  PubMed  Google Scholar 

  84. Bae JS, Kim JY, Park BL, Cheong HS, Kim JH, Shin JG, Park CS, Kim BJ, Lee CS, Kim JW, Lee M, Choi WH, Shin TM, Hwang J, Shin HD, Woo SI (2013) Lack of association between DISC1 polymorphisms and risk of schizophrenia in a Korean population. Psychiatry Research 208(2):189–190

    CAS  PubMed  Google Scholar 

  85. Jaubert PJ, Golub MS, Lo YY, Germann SL, Dehoff MH, Worley PF, Kang SH, Schwarz MK, Seeburg PH, Berman RF (2007) Complex, multimodal behavioral profile of the Homer1 knockout mouse. Gene Brain Behav 6(2):141–154

    CAS  Google Scholar 

  86. Szumlinski KK, Lominac KD, Kleschen MJ, Oleson EB, Dehoff MH, Schwarz MK, Seeburg PH, Worley PF, Kalivas PW (2005) Behavioral and neurochemical phenotyping of Homer1 mutant mice: possible relevance to schizophrenia. Gene Brain behav 4(5):273–288

    CAS  Google Scholar 

  87. Lominac KD, Oleson EB, Pava M, Klugmann M, Schwarz MK, Seeburg PH, During MJ, Worley PF, Kalivas PW, Szumlinski KK (2005) Distinct roles for different Homer1 isoforms in behaviors and associated prefrontal cortex function. J Neurosci Off J Soc Neurosci 25(50):11586–11594

    CAS  Google Scholar 

  88. Norton N, Williams HJ, Williams NM, Spurlock G, Zammit S, Jones G, Jones S, Owen R, O’Donovan MC, Owen MJ (2003) Mutation screening of the Homer gene family and association analysis in schizophrenia. Am J Med Genet B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet 120B(1):18–21

    CAS  Google Scholar 

  89. Spellmann I, Rujescu D, Musil R, Mayr A, Giegling I, Genius J, Zill P, Dehning S, Opgen-Rhein M, Cerovecki A, Hartmann AM, Schafer M, Bondy B, Muller N, Moller HJ, Riedel M (2011) Homer-1 polymorphisms are associated with psychopathology and response to treatment in schizophrenic patients. J Psychiatr Res 45(2):234–241

    PubMed  Google Scholar 

  90. Gilks WP, Allott EH, Donohoe G, Cummings E, Gill M, Corvin AP, Morris DW (2010) Replicated genetic evidence supports a role for HOMER2 in schizophrenia. Neurosci Lett 468(3):229–233

    CAS  PubMed  Google Scholar 

  91. Kelleher RJ 3rd, Geigenmuller U, Hovhannisyan H, Trautman E, Pinard R, Rathmell B, Carpenter R, Margulies D (2012) High-throughput sequencing of mGluR signaling pathway genes reveals enrichment of rare variants in autism. PloS ONE 7(4):e35003

    CAS  PubMed  Google Scholar 

  92. Giuffrida R, Musumeci S, D’Antoni S, Bonaccorso CM, Giuffrida-Stella AM, Oostra BA, Catania MV (2005) A reduced number of metabotropic glutamate subtype 5 receptors are associated with constitutive homer proteins in a mouse model of fragile X syndrome. J Neurosci Off J Soc Neurosci 25(39):8908–8916

    CAS  Google Scholar 

  93. Ronesi JA, Collins KA, Hays SA, Tsai NP, Guo W, Birnbaum SG, Hu JH, Worley PF, Gibson JR, Huber KM (2012) Disrupted Homer scaffolds mediate abnormal mGluR5 function in a mouse model of fragile X syndrome. Nat Neurosci 15(3):431–440, S431

    CAS  PubMed Central  PubMed  Google Scholar 

  94. de Bartolomeis A, Tomasetti C (2012) Calcium-dependent networks in dopamine-glutamate interaction: the role of postsynaptic scaffolding proteins. Mol Neurobiol 46(2):275–296

    CAS  PubMed  Google Scholar 

  95. Hayashi MK, Tang C, Verpelli C, Narayanan R, Stearns MH, Xu RM, Li H, Sala C, Hayashi Y (2009) The postsynaptic density proteins Homer and Shank form a polymeric network structure. Cell 137(1):159–171

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Sheng M, Kim E (2000) The Shank family of scaffold proteins. J Cell Sci 113(Pt 11):1851–1856

    CAS  PubMed  Google Scholar 

  97. Boeckers TM, Bockmann J, Kreutz MR, Gundelfinger ED (2002) ProSAP/Shank proteins—a family of higher order organizing molecules of the postsynaptic density with an emerging role in human neurological disease. J Neurochem 81(5):903–910

    CAS  PubMed  Google Scholar 

  98. Lim S, Naisbitt S, Yoon J, Hwang JI, Suh PG, Sheng M, Kim E (1999) Characterization of the Shank family of synaptic proteins. Multiple genes, alternative splicing, and differential expression in brain and development. J Biol Chem 274(41):29510–29518

    CAS  PubMed  Google Scholar 

  99. Tu JC, Xiao B, Naisbitt S, Yuan JP, Petralia RS, Brakeman P, Doan A, Aakalu VK, Lanahan AA, Sheng M, Worley PF (1999) Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 23(3):583–592

    CAS  PubMed  Google Scholar 

  100. Bertaso F, Roussignol G, Worley P, Bockaert J, Fagni L, Ango F (2010) Homer1a-dependent crosstalk between NMDA and metabotropic glutamate receptors in mouse neurons. PloS ONE 5(3):e9755

    PubMed Central  PubMed  Google Scholar 

  101. Roussignol G, Ango F, Romorini S, Tu JC, Sala C, Worley PF, Bockaert J, Fagni L (2005) Shank expression is sufficient to induce functional dendritic spine synapses in aspiny neurons. J Neurosci Off J Soc Neurosci 25(14):3560–3570

    CAS  Google Scholar 

  102. Grabrucker AM, Schmeisser MJ, Schoen M, Boeckers TM (2011) Postsynaptic ProSAP/Shank scaffolds in the cross-hair of synaptopathies. Trends Cell Biol 21(10):594–603

    CAS  PubMed  Google Scholar 

  103. Gauthier J, Champagne N, Lafreniere RG, Xiong L, Spiegelman D, Brustein E, Lapointe M, Peng H, Cote M, Noreau A, Hamdan FF, Addington AM, Rapoport JL, Delisi LE, Krebs MO, Joober R, Fathalli F, Mouaffak F, Haghighi AP, Neri C, Dube MP, Samuels ME, Marineau C, Stone EA, Awadalla P, Barker PA, Carbonetto S, Drapeau P, Rouleau GA (2010) De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia. Proc Natl Acad Sci U S A 107(17):7863–7868

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Lennertz L, Wagner M, Wolwer W, Schuhmacher A, Frommann I, Berning J, Schulze-Rauschenbach S, Landsberg MW, Steinbrecher A, Alexander M, Franke PE, Pukrop R, Ruhrmann S, Bechdolf A, Gaebel W, Klosterkotter J, Hafner H, Maier W, Mossner R (2012) A promoter variant of SHANK1 affects auditory working memory in schizophrenia patients and in subjects clinically at risk for psychosis. Eur Arch Psychiatry Clin Neurosci 262(2):117–124

    PubMed  Google Scholar 

  105. Asrar S, Jia Z (2013) Molecular mechanisms coordinating functional and morphological plasticity at the synapse: role of GluA2/N-cadherin interaction-mediated actin signaling in mGluR-dependent LTD. Cell Signal 25(2):397–402

    CAS  PubMed  Google Scholar 

  106. Assie MB, Dominguez H, Consul-Denjean N, Newman-Tancredi A (2006) In vivo occupancy of dopamine D2 receptors by antipsychotic drugs and novel compounds in the mouse striatum and olfactory tubercles. Naunyn Schmiedeberg’s Arch Pharmacol 373(6):441–450

    CAS  Google Scholar 

  107. Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, Nygren G, Rastam M, Gillberg IC, Anckarsater H, Sponheim E, Goubran-Botros H, Delorme R, Chabane N, Mouren-Simeoni MC, de Mas P, Bieth E, Roge B, Heron D, Burglen L, Gillberg C, Leboyer M, Bourgeron T (2007) Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 39(1):25–27

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Moessner R, Marshall CR, Sutcliffe JS, Skaug J, Pinto D, Vincent J, Zwaigenbaum L, Fernandez B, Roberts W, Szatmari P, Scherer SW (2007) Contribution of SHANK3 mutations to autism spectrum disorder. Am J Hum Genet 81(6):1289–1297

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Emamian ES, Karayiorgou M, Gogos JA (2004) Decreased phosphorylation of NMDA receptor type 1 at serine 897 in brains of patients with Schizophrenia. J Neurosci Off J Soc Neurosci 24(7):1561–1564

    CAS  Google Scholar 

  110. Durand CM, Perroy J, Loll F, Perrais D, Fagni L, Bourgeron T, Montcouquiol M, Sans N (2012) SHANK3 mutations identified in autism lead to modification of dendritic spine morphology via an actin-dependent mechanism. Mol Psychiatry 17(1):71–84

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Peca J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, Lascola CD, Fu Z, Feng G (2011) Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472(7344):437–442

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Arons MH, Thynne CJ, Grabrucker AM, Li D, Schoen M, Cheyne JE, Boeckers TM, Montgomery JM, Garner CC (2012) Autism-associated mutations in ProSAP2/Shank3 impair synaptic transmission and neurexin-neuroligin-mediated transsynaptic signaling. J Neurosci Off J Soc Neurosci 32(43):14966–14978

    CAS  Google Scholar 

  113. Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA, Devon RS, St Clair DM, Muir WJ, Blackwood DH, Porteous DJ (2000) Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 9(9):1415–1423

    CAS  PubMed  Google Scholar 

  114. Porteous DJ, Millar JK, Brandon NJ, Sawa A (2011) DISC1 at 10: connecting psychiatric genetics and neuroscience. Trends Mol Med 17(12):699–706

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Soares DC, Carlyle BC, Bradshaw NJ, Porteous DJ (2011) DISC1: structure, function, and therapeutic potential for major mental illness. ACS Chem Neurosci 2(11):609–632

    CAS  PubMed  Google Scholar 

  116. Benes FM (2000) Emerging principles of altered neural circuitry in schizophrenia. Brain Res Brain Res Rev 31(2–3):251–269

    CAS  PubMed  Google Scholar 

  117. Papaleo F, Lipska BK, Weinberger DR (2012) Mouse models of genetic effects on cognition: relevance to schizophrenia. Neuropharmacology 62(3):1204–1220

    CAS  PubMed  Google Scholar 

  118. Papaleo F, Yang F, Garcia S, Chen J, Lu B, Crawley JN, Weinberger DR (2012) Dysbindin-1 modulates prefrontal cortical activity and schizophrenia-like behaviors via dopamine/D2 pathways. Mol Psychiatry 17(1):85–98

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Mao Y, Ge X, Frank CL, Madison JM, Koehler AN, Doud MK, Tassa C, Berry EM, Soda T, Singh KK, Biechele T, Petryshen TL, Moon RT, Haggarty SJ, Tsai LH (2009) Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell 136(6):1017–1031

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Cohen JE, Lee PR, Chen S, Li W, Fields RD (2011) MicroRNA regulation of homeostatic synaptic plasticity. Proc Natl Acad Sci U S A 108(28):11650–11655

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Hikida T, Jaaro-Peled H, Seshadri S, Oishi K, Hookway C, Kong S, Wu D, Xue R, Andrade M, Tankou S, Mori S, Gallagher M, Ishizuka K, Pletnikov M, Kida S, Sawa A (2007) Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proc Natl Acad Sci U S A 104(36):14501–14506

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Boccuto L, Lauri M, Sarasua SM, Skinner CD, Buccella D, Dwivedi A, Orteschi D, Collins JS, Zollino M, Visconti P, Dupont B, Tiziano D, Schroer RJ, Neri G, Stevenson RE, Gurrieri F, Schwartz CE (2013) Prevalence of SHANK3 variants in patients with different subtypes of autism spectrum disorders. Eur J Hum Genet 21(3):310–316

    CAS  PubMed  Google Scholar 

  123. Pletnikov MV, Ayhan Y, Nikolskaia O, Xu Y, Ovanesov MV, Huang H, Mori S, Moran TH, Ross CA (2008) Inducible expression of mutant human DISC1 in mice is associated with brain and behavioral abnormalities reminiscent of schizophrenia. Mol Psychiatry 13(2):173–186, 115

    CAS  PubMed  Google Scholar 

  124. Arguello PA, Markx S, Gogos JA, Karayiorgou M (2010) Development of animal models for schizophrenia. Dis Model Mech 3(1–2):22–26

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Holley SM, Wang EA, Cepeda C, Jentsch JD, Ross CA, Pletnikov MV, Levine MS (2013) Frontal cortical synaptic communication is abnormal in Disc1 genetic mouse models of schizophrenia. Schizophr Res 146(1–3):264–272

    PubMed  Google Scholar 

  126. Kvajo M, McKellar H, Arguello PA, Drew LJ, Moore H, MacDermott AB, Karayiorgou M, Gogos JA (2008) A mutation in mouse Disc1 that models a schizophrenia risk allele leads to specific alterations in neuronal architecture and cognition. Proc Natl Acad Sci U S A 105(19):7076–7081

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Kvajo M, McKellar H, Drew LJ, Lepagnol-Bestel AM, Xiao L, Levy RJ, Blazeski R, Arguello PA, Lacefield CO, Mason CA, Simonneau M, O’Donnell JM, MacDermott AB, Karayiorgou M, Gogos JA (2011) Altered axonal targeting and short-term plasticity in the hippocampus of Disc1 mutant mice. Proc Natl Acad Sci U S A 108(49):E1349–1358

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Lee FH, Zai CC, Cordes SP, Roder JC, Wong AH (2013) Abnormal interneuron development in disrupted-in-schizophrenia-1 L100P mutant mice. Mol Brain 6:20

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Blum BP, Mann JJ (2002) The GABAergic system in schizophrenia. Int J Neuropsychopharmacol 5(2):159–179

    CAS  PubMed  Google Scholar 

  130. Hashimoto T, Volk DW, Eggan SM, Mirnics K, Pierri JN, Sun Z, Sampson AR, Lewis DA (2003) Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci Off J Soc Neurosci 23(15):6315–6326

    CAS  Google Scholar 

  131. Lepagnol-Bestel AM, Kvajo M, Karayiorgou M, Simonneau M, Gogos JA (2013) A Disc1 mutation differentially affects neurites and spines in hippocampal and cortical neurons. Mol Cell Neurosci 54:84–92

    CAS  PubMed  Google Scholar 

  132. Mouaffak F, Kebir O, Chayet M, Tordjman S, Vacheron MN, Millet B, Jaafari N, Bellon A, Olie JP, Krebs MO (2011) Association of disrupted in schizophrenia 1 (DISC1) missense variants with ultra-resistant schizophrenia. Pharmacogenomics J 11(4):267–273

    CAS  PubMed  Google Scholar 

  133. Takahashi T, Suzuki M, Tsunoda M, Maeno N, Kawasaki Y, Zhou SY, Hagino H, Niu L, Tsuneki H, Kobayashi S, Sasaoka T, Seto H, Kurachi M, Ozaki N (2009) The disrupted-in-schizophrenia-1 Ser704Cys polymorphism and brain morphology in schizophrenia. Psychiatry Res 172(2):128–135

    CAS  PubMed  Google Scholar 

  134. Zhao X, Sun L, Jia H, Meng Q, Wu S, Li N, He S (2009) Isolation rearing induces social and emotional function abnormalities and alters glutamate and neurodevelopment-related gene expression in rats. Prog Neuro-psychopharmacol Biol Psychiatry 33(7):1173–1177

    CAS  Google Scholar 

  135. Fone KC, Porkess MV (2008) Behavioural and neurochemical effects of post-weaning social isolation in rodents-relevance to developmental neuropsychiatric disorders. Neurosci Biobehav Rev 32(6):1087–1102

    CAS  PubMed  Google Scholar 

  136. Moller M, Du Preez JL, Viljoen FP, Berk M, Emsley R, Harvey BH (2012) Social isolation rearing induces mitochondrial, immunological, neurochemical and behavioural deficits in rats, and is reversed by clozapine or N-acetyl cysteine. Brain, behavior, and immunity 30:156–167

    PubMed  Google Scholar 

  137. Kristiansen LV, Meador-Woodruff JH (2005) Abnormal striatal expression of transcripts encoding NMDA interacting PSD proteins in schizophrenia, bipolar disorder and major depression. Schizophr Res 78(1):87–93

    PubMed  Google Scholar 

  138. Toyooka K, Iritani S, Makifuchi T, Shirakawa O, Kitamura N, Maeda K, Nakamura R, Niizato K, Watanabe M, Kakita A, Takahashi H, Someya T, Nawa H (2002) Selective reduction of a PDZ protein, SAP-97, in the prefrontal cortex of patients with chronic schizophrenia. J Neurochem 83(4):797–806

    CAS  PubMed  Google Scholar 

  139. Hiraoka S, Kajii Y, Kuroda Y, Umino A, Nishikawa T (2010) The development- and phencyclidine-regulated induction of synapse-associated protein-97 gene in the rat neocortex. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol 20(3):176–186

    CAS  Google Scholar 

  140. Mandela P, Ma XM (2012) Kalirin, a key player in synapse formation, is implicated in human diseases. Neural plasticity 2012:728161

  141. Xie Z, Cahill ME, Penzes P (2010) Kalirin loss results in cortical morphological alterations. Mol Cell Neurosci 43(1):81–89

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Kushima I, Nakamura Y, Aleksic B, Ikeda M, Ito Y, Shiino T, Okochi T, Fukuo Y, Ujike H, Suzuki M, Inada T, Hashimoto R, Takeda M, Kaibuchi K, Iwata N, Ozaki N (2012) Resequencing and association analysis of the KALRN and EPHB1 genes and their contribution to schizophrenia susceptibility. Schizophr Bull 38(3):552–560

    PubMed  Google Scholar 

  143. Hill JJ, Hashimoto T, Lewis DA (2006) Molecular mechanisms contributing to dendritic spine alterations in the prefrontal cortex of subjects with schizophrenia. Mol Psychiatry 11(6):557–566

    CAS  PubMed  Google Scholar 

  144. Kajimoto Y, Shirakawa O, Lin XH, Hashimoto T, Kitamura N, Murakami N, Takumi T, Maeda K (2003) Synapse-associated protein 90/postsynaptic density-95-associated protein (SAPAP) is expressed differentially in phencyclidine-treated rats and is increased in the nucleus accumbens of patients with schizophrenia. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 28(10):1831–1839

    CAS  Google Scholar 

  145. Bernstein HG, Sahin J, Smalla KH, Gundelfinger ED, Bogerts B, Kreutz MR (2007) A reduced number of cortical neurons show increased Caldendrin protein levels in chronic schizophrenia. Schizophr Res 96(1–3):246–256

    PubMed  Google Scholar 

  146. Verpelli C, Schmeisser MJ, Sala C, Boeckers TM (2012) Scaffold proteins at the postsynaptic density. Adv Exp Med Biol 970:29–61

    CAS  PubMed  Google Scholar 

  147. de Bartolomeis A, Buonaguro EF, Iasevoli F (2013) Serotonin-glutamate and serotonin-dopamine reciprocal interactions as putative molecular targets for novel antipsychotic treatments: from receptor heterodimers to postsynaptic scaffolding and effector proteins. Psychopharmacology 225(1):1–19

    PubMed  Google Scholar 

  148. Seeman P (2010) Dopamine D2 receptors as treatment targets in schizophrenia. Clin Schizophr Relat Psychoses 4(1):56–73

    PubMed  Google Scholar 

  149. Miyamoto S, Miyake N, Jarskog LF, Fleischhacker WW, Lieberman JA (2012) Pharmacological treatment of schizophrenia: a critical review of the pharmacology and clinical effects of current and future therapeutic agents. Mol Psychiatry 17(12):1206–1227

    CAS  PubMed  Google Scholar 

  150. de Bartolomeis A, Aloj L, Ambesi-Impiombato A, Bravi D, Caraco C, Muscettola G, Barone P (2002) Acute administration of antipsychotics modulates Homer striatal gene expression differentially. Brain Res Mol Brain Res 98(1–2):124–129

    PubMed  Google Scholar 

  151. Muddashetty RS, Nalavadi VC, Gross C, Yao X, Xing L, Laur O, Warren ST, Bassell GJ (2011) Reversible inhibition of PSD-95 mRNA translation by miR-125a, FMRP phosphorylation, and mGluR signaling. Mol Cell 42(5):673–688

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Zhang GC, Mao LM, Liu XY, Parelkar NK, Arora A, Yang L, Hains M, Fibuch EE, Wang JQ (2007) In vivo regulation of Homer1a expression in the striatum by cocaine. Mol Pharmacol 71(4):1148–1158

    CAS  PubMed  Google Scholar 

  153. Ambesi-Impiombato A, Panariello F, Dell’aversano C, Tomasetti C, Muscettola G, de Bartolomeis A (2007) Differential expression of Homer 1 gene by acute and chronic administration of antipsychotics and dopamine transporter inhibitors in the rat forebrain. Synapse 61(6):429–439

    CAS  PubMed  Google Scholar 

  154. Seeger TF, Seymour PA, Schmidt AW, Zorn SH, Schulz DW, Lebel LA, McLean S, Guanowsky V, Howard HR, Lowe JA 3rd et al (1995) Ziprasidone (CP-88,059): a new antipsychotic with combined dopamine and serotonin receptor antagonist activity. J Pharmacol Exp Ther 275(1):101–113

    CAS  PubMed  Google Scholar 

  155. Iasevoli F, Tomasetti C, Ambesi-Impiombato A, Muscettola G, de Bartolomeis A (2009) Dopamine receptor subtypes contribution to Homer1a induction: insights into antipsychotic molecular action. Prog Neuro-psychopharmacol Biol Psychiatry 33(5):813–821

    CAS  Google Scholar 

  156. Robinet EA, Geurts M, Maloteaux JM, Pauwels PJ (2001) Chronic treatment with certain antipsychotic drugs preserves upregulation of regulator of G-protein signalling 2 mRNA in rat striatum as opposed to c-fos mRNA. Neurosci Lett 307(1):45–48

    CAS  PubMed  Google Scholar 

  157. Semba J, Sakai MW, Suhara T, Akanuma N (1999) Differential effects of acute and chronic treatment with typical and atypical neuroleptics on c-fos mRNA expression in rat forebrain regions using non-radioactive in situ hybridization. Neurochem Int 34(4):269–277

    CAS  PubMed  Google Scholar 

  158. Leucht S, Corves C, Arbter D, Engel RR, Li C, Davis JM (2009) Second-generation versus first-generation antipsychotic drugs for schizophrenia: a meta-analysis. Lancet 373(9657):31–41

    CAS  PubMed  Google Scholar 

  159. Johnstone M, Thomson PA, Hall J, McIntosh AM, Lawrie SM, Porteous DJ (2011) DISC1 in schizophrenia: genetic mouse models and human genomic imaging. Schizophr Bull 37(1):14–20

    PubMed  Google Scholar 

  160. Hayashi-Takagi A, Takaki M, Graziane N, Seshadri S, Murdoch H, Dunlop AJ, Makino Y, Seshadri AJ, Ishizuka K, Srivastava DP, Xie Z, Baraban JM, Houslay MD, Tomoda T, Brandon NJ, Kamiya A, Yan Z, Penzes P, Sawa A (2010) Disrupted-in-schizophrenia 1 (DISC1) regulates spines of the glutamate synapse via Rac1. Nat Neurosci 13(3):327–332

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Wang Q, Charych EI, Pulito VL, Lee JB, Graziane NM, Crozier RA, Revilla-Sanchez R, Kelly MP, Dunlop AJ, Murdoch H, Taylor N, Xie Y, Pausch M, Hayashi-Takagi A, Ishizuka K, Seshadri S, Bates B, Kariya K, Sawa A, Weinberg RJ, Moss SJ, Houslay MD, Yan Z, Brandon NJ (2011) The psychiatric disease risk factors DISC1 and TNIK interact to regulate synapse composition and function. Mol Psychiatry 16(10):1006–1023

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Nagai T, Kitahara Y, Ibi D, Nabeshima T, Sawa A, Yamada K (2011) Effects of antipsychotics on the behavioral deficits in human dominant-negative DISC1 transgenic mice with neonatal polyI:C treatment. Behav Brain Res 225(1):305–310

    CAS  PubMed  Google Scholar 

  163. Iasevoli F, Tomasetti C, de Bartolomeis A (2013) Scaffolding proteins of the post-synaptic density contribute to synaptic plasticity by regulating receptor localization and distribution: relevance for neuropsychiatric diseases. Neurochem Res 38(1):1–22

    CAS  PubMed  Google Scholar 

  164. de Bartolomeis A, Fiore G, Iasevoli F (2005) Dopamine-glutamate interaction and antipsychotics mechanism of action: implication for new pharmacological strategies in psychosis. Curr Pharm Des 11(27):3561–3594

    PubMed  Google Scholar 

  165. de Bartolomeis A, Iasevoli F (2003) The Homer family and the signal transduction system at glutamatergic postsynaptic density: potential role in behavior and pharmacotherapy. Psychopharmacol Bull 37(3):51–83

    PubMed  Google Scholar 

  166. de Bartolomeis A, Marmo F, Filomena Buonaguro E, Rossi R, Tomasetti C, Iasevoli F (2013) Imaging brain gene expression profiles by antipsychotics: region-specific action of amisulpride on postsynaptic density transcripts compared to haloperidol. European neuropsychopharmacology: the journal of the European College of Neuropsychopharmacology, in press

  167. de Bartolomeis A, Sarappa C, Magara S, Iasevoli F (2012) Targeting glutamate system for novel antipsychotic approaches: relevance for residual psychotic symptoms and treatment resistant schizophrenia. Eur J Pharmacol 682(1–3):1–11

    PubMed  Google Scholar 

  168. de Bartolomeis A, Tomasetti C, Cicale M, Yuan PX, Manji HK (2012) Chronic treatment with lithium or valproate modulates the expression of Homer1b/c and its related genes Shank and inositol 1,4,5-trisphosphate receptor. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol 22(7):527–535

    Google Scholar 

  169. Debono R, Topless R, Markie D, Black MA, Merriman TR (2012) Analysis of the DISC1 translocation partner (11q14.3) in genetic risk of schizophrenia. Gen Brain Behav 11(7):859–863

    CAS  Google Scholar 

  170. Elias GM, Nicoll RA (2007) Synaptic trafficking of glutamate receptors by MAGUK scaffolding proteins. Trends Cell Biol 17(7):343–352

    CAS  PubMed  Google Scholar 

  171. Polese D, de Serpis AA, Ambesi-Impiombato A, Muscettola G, de Bartolomeis A (2002) Homer 1a gene expression modulation by antipsychotic drugs: involvement of the glutamate metabotropic system and effects of D-cycloserine. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 27(6):906–913

    CAS  Google Scholar 

  172. Dracheva S, Marras SA, Elhakem SL, Kramer FR, Davis KL, Haroutunian V (2001) N-methyl-D-aspartic acid receptor expression in the dorsolateral prefrontal cortex of elderly patients with schizophrenia. Am J Psychiatry 158(9):1400–1410

    CAS  PubMed  Google Scholar 

  173. de Bartolomeis A, Sarappa C, Magara S, Iasevoli F (2012) Targeting glutamate system for novel antipsychotic approaches: relevance for residual psychotic symptoms and treatment resistant schizophrenia. Eur J Pharmacol 682(1–3):1–11

    PubMed  Google Scholar 

  174. Zhou L, Li F, Xu HB, Luo CX, Wu HY, Zhu MM, Lu W, Ji X, Zhou QG, Zhu DY (2010) Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95. Nat Med 16(12):1439–1443

    CAS  PubMed  Google Scholar 

  175. Minnerup J, Sutherland BA, Buchan AM, Kleinschnitz C (2012) Neuroprotection for stroke: current status and future perspectives. Int J Mol Sci 13(9):11753–11772

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Ehrlich I, Malinow R (2004) Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity. The Journal of neuroscience: the official journal of the Society for Neuroscience 24(4):916–927

    CAS  Google Scholar 

  177. Ting AK, Chen Y, Wen L, Yin DM, Shen C, Tao Y, Liu X, Xiong WC, Mei L (2011) Neuregulin 1 promotes excitatory synapse development and function in GABAergic interneurons. J Neurosci Off J Soc Neurosci 31(1):15–25

    CAS  Google Scholar 

  178. Tomasetti C, Dell’Aversano C, Iasevoli F, Marmo F, de Bartolomeis A (2011) The acute and chronic effects of combined antipsychotic-mood stabilizing treatment on the expression of cortical and striatal postsynaptic density genes. Prog Neuro-psychopharmacol Biol Psychiatry 35(1):184–197

    CAS  Google Scholar 

  179. Fatemi SH, Reutiman TJ, Folsom TD, Bell C, Nos L, Fried P, Pearce DA, Singh S, Siderovski DP, Willard FS, Fukuda M (2006) Chronic olanzapine treatment causes differential expression of genes in frontal cortex of rats as revealed by DNA microarray technique. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 31(9):1888–1899

    CAS  Google Scholar 

  180. Wohr M, Roullet FI, Hung AY, Sheng M, Crawley JN (2011) Communication impairments in mice lacking Shank1: reduced levels of ultrasonic vocalizations and scent marking behavior. PloS ONE 6(6):e20631

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Jaaro-Peled H, Niwa M, Foss CA, Murai R, de Los RS, Kamiya A, Mateo Y, O’Donnell P, Cascella NG, Nabeshima T, Guilarte TR, Pomper MG, Sawa A (2013) Subcortical dopaminergic deficits in a DISC1 mutant model: a study in direct reference to human molecular brain imaging. Hum Mol Genet 22(8):1574–1580

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

All members of the Laboratory of Molecular and Translational Psychiatry contributed to ideas and comments on the present work.

Conflict of Interest

Andrea de Bartolomeis has received unrestricted research funding from Astra Zeneca, Janssen-Cilag, and Lundbeck. The funding was made available to the Department of Neuroscience, University of Naples Federico II. He has received honoraria as speaker at educational activity sponsored by Astra-Zeneca Italia, Janssen-Cilag Italy, Eli Lilly, and Bristol-Myers Squibb.

All other authors declare that, except for income received from our primary employer, no financial support or compensation has been received from any individual or corporate entity over the past 3 years for research or professional service, and there are no personal financial holdings that could be perceived as constituting a potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea de Bartolomeis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Bartolomeis, A., Latte, G., Tomasetti, C. et al. Glutamatergic Postsynaptic Density Protein Dysfunctions in Synaptic Plasticity and Dendritic Spines Morphology: Relevance to Schizophrenia and Other Behavioral Disorders Pathophysiology, and Implications for Novel Therapeutic Approaches. Mol Neurobiol 49, 484–511 (2014). https://doi.org/10.1007/s12035-013-8534-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8534-3

Keywords

Navigation