Skip to main content

Advertisement

Log in

tPA Regulates Neurite Outgrowth by Phosphorylation of LRP5/6 in Neural Progenitor Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Despite the important role of tissue plasminogen activator (tPA) as a neuromodulator in neurons, microglia, and astrocytes, its role in neural progenitor cell (NPC) development is not clear yet. We identified that tPA is highly expressed in NPCs compared with neurons. Inhibition of tPA activity or expression using tPA stop, PAI-1, or tPA siRNA inhibited neurite outgrowth from NPCs, while overexpression or addition of exogenous tPA increased neurite outgrowth. The expression of Wnt and β-catenin as well as phosphorylation of LRP5 and LRP6, which has been implicated in Wnt–β-catenin signaling, was rapidly increased after tPA treatment and was decreased by tPA siRNA transfection. Knockdown of β-catenin or LRP5/6 expression by siRNA prevented tPA-induced neurite extension. NPCs obtained from tPA KO mice showed impaired neurite outgrowth compared with WT NPCs. In ischemic rat brains, axon density was higher in the brains transplanted with WT NPCs than in those with tPA KO NPCs, suggesting increased axonal sprouting by NPC-derived tPA. tPA-mediated regulation of neuronal maturation in NPCs may play an important role during development and in regenerative conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pittman RN, Ivins JK, Buettner HM (1989) Neuronal plasminogen activators: cell surface binding sites and involvement in neurite outgrowth. J Neurosci 9:4269–4286

    CAS  PubMed  Google Scholar 

  2. Wu YP, Siao CJ, Lu W, Sung TC, Frohman MA et al (2000) The tissue plasminogen activator (tPA)/plasmin extracellular proteolytic system regulates seizure-induced hippocampal mossy fiber outgrowth through a proteoglycan substrate. J Cell Biol 148:1295–1304

    Article  CAS  PubMed  Google Scholar 

  3. Verrall S, Seeds NW (1989) Characterization of 125I-tissue plasminogen activator binding to cerebellar granule neurons. J Cell Biol 109:265–271

    Article  CAS  PubMed  Google Scholar 

  4. Jacovina AT, Zhong F, Khazanova E, Lev E, Deora AB et al (2001) Neuritogenesis and the nerve growth factor-induced differentiation of PC-12 cells requires annexin II-mediated plasmin generation. J Biol Chem 276:49350–49358

    Article  CAS  PubMed  Google Scholar 

  5. Shen LH, Xin H, Li Y, Zhang RL, Cui Y et al (2011) Endogenous tissue plasminogen activator mediates bone marrow stromal cell-induced neurite remodeling after stroke in mice. Stroke 42:459–464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Siconolfi LB, Seeds NW (2001) Induction of the plasminogen activator system accompanies peripheral nerve regeneration after sciatic nerve crush. J Neurosci 21:4336–4347

    CAS  PubMed  Google Scholar 

  7. Siconolfi LB, Seeds NW (2001) Mice lacking tPA, uPA, or plasminogen genes showed delayed functional recovery after sciatic nerve crush. J Neurosci 21:4348–4355

    CAS  PubMed  Google Scholar 

  8. Akiyama T (2000) Wnt/beta-catenin signaling. Cytokine Growth Factor Rev 11:273–282

    Article  CAS  PubMed  Google Scholar 

  9. Fradkin LG, Noordermeer JN, Nusse R (1995) The Drosophila Wnt protein DWnt-3 is a secreted glycoprotein localized on the axon tracts of the embryonic CNS. Dev Biol 168:202–213

    Article  CAS  PubMed  Google Scholar 

  10. Hall AC, Lucas FR, Salinas PC (2000) Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell 100:525–535

    Article  CAS  PubMed  Google Scholar 

  11. Purro SA, Ciani L, Hoyos-Flight M, Stamatakou E, Siomou E et al (2008) Wnt regulates axon behavior through changes in microtubule growth directionality: a new role for adenomatous polyposis coli. J Neurosci 28:8644–8654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Maupas-Schwalm F, Robinet C, Auge N, Thiers JC, Garcia V et al (2005) Activation of the {beta}-catenin/T-cell-specific transcription factor/lymphoid enhancer factor-1 pathway by plasminogen activators in ECV304 carcinoma cells. Cancer Res 65:526–532

    CAS  PubMed  Google Scholar 

  13. Lin L, Bu G, Mars WM, Reeves WB, Tanaka S et al (2010) tPA activates LDL receptor-related protein 1-mediated mitogenic signaling involving the p90RSK and GSK3beta pathway. Am J Pathol 177:1687–1696

    Article  CAS  PubMed  Google Scholar 

  14. Rulifson EJ, Wu CH, Nusse R (2000) Pathway specificity by the bifunctional receptor frizzled is determined by affinity for wingless. Mol Cell 6:117–126

    Article  CAS  PubMed  Google Scholar 

  15. Bhanot P, Fish M, Jemison JA, Nusse R, Nathans J et al (1999) Frizzled and Dfrizzled-2 function as redundant receptors for Wingless during Drosophila embryonic development. Development 126:4175–4186

    CAS  PubMed  Google Scholar 

  16. Bhanot P, Brink M, Samos CH, Hsieh JC, Wang Y et al (1996) A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382:225–230

    Article  CAS  PubMed  Google Scholar 

  17. Pinson KI, Brennan J, Monkley S, Avery BJ, Skarnes WC (2000) An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 407:535–538

    Article  CAS  PubMed  Google Scholar 

  18. Wehrli M, Dougan ST, Caldwell K, O'Keefe L, Schwartz S et al (2000) Arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 407:527–530

    Article  CAS  PubMed  Google Scholar 

  19. Tamai K, Semenov M, Kato Y, Spokony R, Liu C et al (2000) LDL-receptor-related proteins in Wnt signal transduction. Nature 407:530–535

    Article  CAS  PubMed  Google Scholar 

  20. Cselenyi CS, Jernigan KK, Tahinci E, Thorne CA, Lee LA et al (2008) LRP6 transduces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3's phosphorylation of beta-catenin. Proc Natl Acad Sci U S A 105:8032–8037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Piao S, Lee SH, Kim H, Yum S, Stamos JL et al (2008) Direct inhibition of GSK3beta by the phosphorylated cytoplasmic domain of LRP6 in Wnt/beta-catenin signaling. PLoS One 3:e4046

    Article  PubMed Central  PubMed  Google Scholar 

  22. Herz J, Strickland DK (2001) LRP: a multifunctional scavenger and signaling receptor. J Clin Invest 108:779–784

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Qiu Z, Hyman BT, Rebeck GW (2004) Apolipoprotein E receptors mediate neurite outgrowth through activation of p44/42 mitogen-activated protein kinase in primary neurons. J Biol Chem 279:34948–34956

    Article  CAS  PubMed  Google Scholar 

  24. Shi Y, Mantuano E, Inoue G, Campana WM, Gonias SL (2009) Ligand binding to LRP1 transactivates Trk receptors by a Src family kinase-dependent pathway. Sci Signal 2:ra18

    Article  PubMed Central  PubMed  Google Scholar 

  25. Krystosek A, Seeds NW (1981) Plasminogen activator release at the neuronal growth cone. Science 213:1532–1534

    Article  CAS  PubMed  Google Scholar 

  26. Krystosek A, Seeds NW (1984) Peripheral neurons and Schwann cells secrete plasminogen activator. J Cell Biol 98:773–776

    Article  CAS  PubMed  Google Scholar 

  27. Docagne F, Nicole O, Marti HH, MacKenzie ET, Buisson A et al (1999) Transforming growth factor-beta1 as a regulator of the serpins/t-PA axis in cerebral ischemia. FASEB J 13:1315–1324

    CAS  PubMed  Google Scholar 

  28. Rogister B, Leprince P, Pettmann B, Labourdette G, Sensenbrenner M et al (1988) Brain basic fibroblast growth factor stimulates the release of plasminogen activators by newborn rat cultured astroglial cells. Neurosci Lett 91:321–326

    Article  CAS  PubMed  Google Scholar 

  29. Tsirka SE, Rogove AD, Bugge TH, Degen JL, Strickland S (1997) An extracellular proteolytic cascade promotes neuronal degeneration in the mouse hippocampus. J Neurosci 17:543–552

    CAS  PubMed  Google Scholar 

  30. Kalderon N, Ahonen K, Fedoroff S (1990) Developmental transition in plasticity properties of differentiating astrocytes: age-related biochemical profile of plasminogen activators in astroglial cultures. Glia 3:413–426

    Article  CAS  PubMed  Google Scholar 

  31. Zheng S, Yin ZQ, Zeng YX (2008) Developmental profile of tissue plasminogen activator in postnatal Long Evans rat visual cortex. Mol Vis 14:975–982

    CAS  PubMed  Google Scholar 

  32. Friedman GC, Seeds NW (1995) Tissue plasminogen activator mRNA expression in granule neurons coincides with their migration in the developing cerebellum. J Comp Neurol 360:658–670

    Article  CAS  PubMed  Google Scholar 

  33. Go HS, Shin CY, Lee SH, Jeon SJ, Kim KC et al (2009) Increased proliferation and gliogenesis of cultured rat neural progenitor cells by lipopolysaccharide-stimulated astrocytes. Neuroimmunomodulation 16:365–376

    Article  CAS  PubMed  Google Scholar 

  34. Slack RS, El-Bizri H, Wong J, Belliveau DJ, Miller FD (1998) A critical temporal requirement for the retinoblastoma protein family during neuronal determination. J Cell Biol 140:1497–1509

    Article  CAS  PubMed  Google Scholar 

  35. Shin CY, Choi JW, Jang ES, Ryu JH, Kim WK et al (2001) Glucocorticoids exacerbate peroxynitrite mediated potentiation of glucose deprivation-induced death of rat primary astrocytes. Brain Res 923:163–171

    Article  CAS  PubMed  Google Scholar 

  36. Lee WJ, Shin CY, Yoo BK, Ryu JR, Choi EY et al (2003) Induction of matrix metalloproteinase-9 (MMP-9) in lipopolysaccharide-stimulated primary astrocytes is mediated by extracellular signal-regulated protein kinase 1/2 (Erk1/2). Glia 41:15–24

    Article  PubMed  Google Scholar 

  37. Kim JW, Lee SH, Ko HM, Kwon KJ, Cho KS et al (2011) Biphasic regulation of tissue plasminogen activator activity in ischemic rat brain and in cultured neural cells: essential role of astrocyte-derived plasminogen activator inhibitor-1. Neurochem Int 58:423–433

    Article  CAS  PubMed  Google Scholar 

  38. Shin CY, Choi JW, Ryu JR, Ko KH, Choi JJ et al (2002) Glucose deprivation decreases nitric oxide production via NADPH depletion in immunostimulated rat primary astrocytes. Glia 37:268–274

    Article  PubMed  Google Scholar 

  39. Ding Y, Xi Y, Chen T, Wang JY, Tao DL et al (2008) Caprin-2 enhances canonical Wnt signaling through regulating LRP5/6 phosphorylation. J Cell Biol 182:865–872

    Article  CAS  PubMed  Google Scholar 

  40. Lee HY, Hwang IY, Im H, Koh JY, Kim YH (2007) Non-proteolytic neurotrophic effects of tissue plasminogen activator on cultured mouse cerebrocortical neurons. J Neurochem 101:1236–1247

    Article  CAS  PubMed  Google Scholar 

  41. Wei L, Cui L, Snider BJ, Rivkin M, Yu SS et al (2005) Transplantation of embryonic stem cells overexpressing Bcl-2 promotes functional recovery after transient cerebral ischemia. Neurobiol Dis 19:183–193

    Article  CAS  PubMed  Google Scholar 

  42. Salthouse TN (1964) Luxol fast blue G as a myelin stain. Stain Technol 39:123

    CAS  PubMed  Google Scholar 

  43. Brennan K, Gonzalez-Sancho JM, Castelo-Soccio LA, Howe LR, Brown AM (2004) Truncated mutants of the putative Wnt receptor LRP6/Arrow can stabilize beta-catenin independently of Frizzled proteins. Oncogene 23:4873–4884

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Tamai K, Zeng X, Liu C, Zhang X, Harada Y et al (2004) A mechanism for Wnt coreceptor activation. Mol Cell 13:149–156

    Article  CAS  PubMed  Google Scholar 

  45. Kundel M, Jones KJ, Shin CY, Wells DG (2009) Cytoplasmic polyadenylation element-binding protein regulates neurotrophin-3-dependent beta-catenin mRNA translation in developing hippocampal neurons. J Neurosci 29:13630–13639

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Lucas FR, Salinas PC (1997) WNT-7a induces axonal remodeling and increases synapsin I levels in cerebellar neurons. Dev Biol 192:31–44

    Article  CAS  PubMed  Google Scholar 

  47. Lucas FR, Goold RG, Gordon-Weeks PR, Salinas PC (1998) Inhibition of GSK-3beta leading to the loss of phosphorylated MAP-1B is an early event in axonal remodelling induced by WNT-7a or lithium. J Cell Sci 111(Pt 10):1351–1361

    CAS  PubMed  Google Scholar 

  48. Caricasole A, Ferraro T, Iacovelli L, Barletta E, Caruso A et al (2003) Functional characterization of WNT7A signaling in PC12 cells: interaction with A FZD5 x LRP6 receptor complex and modulation by Dickkopf proteins. J Biol Chem 278:37024–37031

    Article  CAS  PubMed  Google Scholar 

  49. Tzarfaty-Majar V, Lopez-Alemany R, Feinstein Y, Gombau L, Goldshmidt O et al (2001) Plasmin-mediated release of the guidance molecule F-spondin from the extracellular matrix. J Biol Chem 276:28233–28241

    Article  CAS  PubMed  Google Scholar 

  50. Park JE, Keller GA, Ferrara N (1993) The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell 4:1317–1326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Zhang L (2010) Glycosaminoglycan (GAG) biosynthesis and GAG-binding proteins. Prog Mol Biol Transl Sci 93:1–17

    Article  CAS  PubMed  Google Scholar 

  52. Zilberberg A, Yaniv A, Gazit A (2004) The low density lipoprotein receptor-1, LRP1, interacts with the human frizzled-1 (HFz1) and down-regulates the canonical Wnt signaling pathway. J Biol Chem 279:17535–17542

    Article  CAS  PubMed  Google Scholar 

  53. Kawata K, Kubota S, Eguchi T, Moritani NH, Shimo T et al (2010) Role of the low-density lipoprotein receptor-related protein-1 in regulation of chondrocyte differentiation. J Cell Physiol 222:138–148

    Article  CAS  PubMed  Google Scholar 

  54. Lindner I, Hemdan NY, Buchold M, Huse K, Bigl M et al (2010) Alpha2-macroglobulin inhibits the malignant properties of astrocytoma cells by impeding beta-catenin signaling. Cancer Res 70:277–287

    Article  CAS  PubMed  Google Scholar 

  55. Xia CH, Yablonka-Reuveni Z, Gong X (2010) LRP5 is required for vascular development in deeper layers of the retina. PLoS One 5:e11676

    Article  PubMed Central  PubMed  Google Scholar 

  56. Castelo-Branco G, Andersson ER, Minina E, Sousa KM, Ribeiro D et al (2010) Delayed dopaminergic neuron differentiation in Lrp6 mutant mice. Dev Dyn 239:211–221

    CAS  PubMed  Google Scholar 

  57. Parr BA, McMahon AP (1995) Dorsalizing signal Wnt-7a required for normal polarity of D-V and A-P axes of mouse limb. Nature 374:350–353

    Article  CAS  PubMed  Google Scholar 

  58. Yang Y, Niswander L (1995) Interaction between the signaling molecules WNT7a and SHH during vertebrate limb development: dorsal signals regulate anteroposterior patterning. Cell 80:939–947

    Article  CAS  PubMed  Google Scholar 

  59. Kim WY, Zhou FQ, Zhou J, Yokota Y, Wang YM et al (2006) Essential roles for GSK-3s and GSK-3-primed substrates in neurotrophin-induced and hippocampal axon growth. Neuron 52:981–996

    Article  CAS  PubMed  Google Scholar 

  60. Yu X, Malenka RC (2003) Beta-catenin is critical for dendritic morphogenesis. Nat Neurosci 6:1169–1177

    Article  CAS  PubMed  Google Scholar 

  61. Su F, Kozak KR, Herschman H, Reddy ST, Farias-Eisner R (2007) Characterization of the rat urokinase plasminogen activator receptor promoter in PC12 cells. J Neurosci Res 85:1952–1958

    Article  CAS  PubMed  Google Scholar 

  62. Hayden SM, Seeds NW (1996) Modulated expression of plasminogen activator system components in cultured cells from dissociated mouse dorsal root ganglia. J Neurosci 16:2307–2317

    CAS  PubMed  Google Scholar 

  63. Asuthkar S, Gondi CS, Nalla AK, Velpula KK, Gorantla B et al (2012) Urokinase-type plasminogen activator receptor (uPAR)-mediated regulation of WNT/beta-catenin signaling is enhanced in irradiated medulloblastoma cells. J Biol Chem 287:20576–20589

    Article  CAS  PubMed  Google Scholar 

  64. Bukhari N, Torres L, Robinson JK, Tsirka SE (2011) Axonal regrowth after spinal cord injury via chondroitinase and the tissue plasminogen activator (tPA)/plasmin system. J Neurosci 31:14931–14943

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Engelkamp D, Rashbass P, Seawright A, van Heyningen V (1999) Role of Pax6 in development of the cerebellar system. Development 126:3585–3596

    CAS  PubMed  Google Scholar 

  66. Vaillant C, Meissirel C, Mutin M, Belin MF, Lund LR et al (2003) MMP-9 deficiency affects axonal outgrowth, migration, and apoptosis in the developing cerebellum. Mol Cell Neurosci 24:395–408

    Article  CAS  PubMed  Google Scholar 

  67. Gates MA, Tai CC, Macklis JD (2000) Neocortical neurons lacking the protein-tyrosine kinase B receptor display abnormal differentiation and process elongation in vitro and in vivo. Neuroscience 98:437–447

    Article  CAS  PubMed  Google Scholar 

  68. Malin D, Sonnenberg-Riethmacher E, Guseva D, Wagener R, Aszodi A et al (2009) The extracellular-matrix protein matrilin 2 participates in peripheral nerve regeneration. J Cell Sci 122:995–1004

    Article  CAS  PubMed  Google Scholar 

  69. Seeds NW, Basham ME, Haffke SP (1999) Neuronal migration is retarded in mice lacking the tissue plasminogen activator gene. Proc Natl Acad Sci U S A 96:14118–14123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Xin H, Li Y, Shen LH, Liu X, Wang X et al (2010) Increasing tPA activity in astrocytes induced by multipotent mesenchymal stromal cells facilitate neurite outgrowth after stroke in the mouse. PLoS One 5:e9027

    Article  PubMed Central  PubMed  Google Scholar 

  71. Lin YC, Ko TL, Shih YH, Lin MY, Fu TW et al (2011) Human umbilical mesenchymal stem cells promote recovery after ischemic stroke. Stroke 42:2045–2053

    Article  PubMed  Google Scholar 

  72. Shen LH, Li Y, Chopp M (2010) Astrocytic endogenous glial cell derived neurotrophic factor production is enhanced by bone marrow stromal cell transplantation in the ischemic boundary zone after stroke in adult rats. Glia 58:1074–1081

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Bao X, Wei J, Feng M, Lu S, Li G et al (2011) Transplantation of human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and endogenous neurogenesis after cerebral ischemia in rats. Brain Res 1367:103–113

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (No. A120029), and by the Mid-career Researcher Program Project No. 2011–0014258 through the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MEST) (Shin, C.Y.).

Conflict of Interest

The authors declare no conflict of interest or competing commercial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jong Hoon Ryu or Chan Young Shin.

Additional information

Sung Hoon Lee and Hyun Myung Ko contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.H., Ko, H.M., Kwon, K.J. et al. tPA Regulates Neurite Outgrowth by Phosphorylation of LRP5/6 in Neural Progenitor Cells. Mol Neurobiol 49, 199–215 (2014). https://doi.org/10.1007/s12035-013-8511-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8511-x

Keywords

Navigation