Skip to main content

Advertisement

Log in

Protein Truncation as a Common Denominator of Human Neurodegenerative Foldopathies

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neurodegenerative foldopathies are characterized by aberrant folding of diseased modified proteins, which are major constituents of the intracellular and extracellular lesions. These lesions correlate with the cognitive and/or motor impairment seen in these diseases. The majority of the disease modified proteins in neurodegenerative foldopathies belongs to the group of proteins termed as intrinsically disordered proteins (IDPs). Several independent studies have showed that abnormal protein processing constitutes the key pathological feature of these disorders. The current review focuses on protein truncation as a common denominator of neurodegenerative foldopathies, which is considered to be the major driving force behind the pathological metamorphosis of brain IDPs. The aim of the review is to emphasize the key role of the protein truncation in the pathogenic pathways of neurodegenerative diseases. A deeper understanding of the complex downstream processing of the IDPs, resulting in the generation of pathologically modified proteins might be a prerequisite for the successful therapeutic strategies of several fatal neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Skrabana R, Skrabanova-Khuebachova M, Kontsek P, Novak M (2006) Alzheimer’s-disease-associated conformation of intrinsically disordered tau protein studied by intrinsically disordered protein liquid-phase competitive enzyme-linked immunosorbent assay. Analytical biochem 359:230–237

    CAS  Google Scholar 

  2. Sticht H, Bayer P, Willbold D, Dames S, Hilbich C et al (1995) Structure of amyloid A4-(1–40)-peptide of Alzheimer’s disease. Eur J Biochem 233:293–298

    CAS  PubMed  Google Scholar 

  3. Dyson HJ, Wright PE (2005) Intrisically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208

    CAS  PubMed  Google Scholar 

  4. Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT Jr (1996) NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35:13709–13715

    CAS  PubMed  Google Scholar 

  5. Raychaudhuri S, Majumder P, Sarkar S, Giri K, Mukhopadhyay D, Bhattacharyya NP (2008) Huntingtin interacting protein HYPK is intrinsically unstructured. Proteins 71:1686–1698

    CAS  PubMed  Google Scholar 

  6. Chen YW (2003) Local protein unfolding and pathogenesis of polyglutamine-expansion diseases. PROTEINS: Struct Funct Genet 51:68–73

    CAS  Google Scholar 

  7. He B, Wang K, Li Y, Xue B, Uversky VN, Dunker AK (2009) Predicting intrinsic disorder in proteins: An overview. Cell Res 19:929–949

    CAS  PubMed  Google Scholar 

  8. Uversky VN, Oldfield CJ, Midic U, Xie H, Xue B et al (2009) Unfoldomics of human diseases: Linking protein intrinsic disorder with diseases. BMC Genomics 10(Suppl 1):S7. doi:10.1186/1471-2164-10-S1-S7

    PubMed Central  PubMed  Google Scholar 

  9. Wischik CM, Novak M, Edwards PC, Klug A, Tichelaar W, Crowther RA (1988) Structural characterization of the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci USA 85:4884–4888

    CAS  PubMed  Google Scholar 

  10. Wischik CM, Novak M, Thøgersen HC, Edwards PC, Runswick MJ et al (1988) Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci USA 85:4506–4510

    CAS  PubMed  Google Scholar 

  11. Novak M, Kabat J, Wischik CM (1993) Molecular characterization of the minimal protease resistant tau unit of the Alzheimer’s disease paired helical filament. EMBO J 12:365–370

    CAS  PubMed  Google Scholar 

  12. Novak M (1994) Truncated tau protein as a new marker for Alzheimer’s disease. Acta Virol 38:173–189

    CAS  PubMed  Google Scholar 

  13. Landles C, Sathasivam K, Weiss A, Woodman B, Moffitt H et al (2010) Proteolysis of mutant huntingtin produces an exon 1 fragment that accumulates as an aggregated protein in neuronal nuclei in Huntington disease. J Biol Chem 285:8808–8823

    CAS  PubMed  Google Scholar 

  14. Lunkes A, Lindenberg KS, Ben-Haiem L, Weber C, Devys D, Landwehrmeyer GB, Mandel JL, Trottier Y (2002) Proteases acting on mutant huntingtin generate cleaved products that differentially build up cytoplasmic and nuclear inclusions. Mol Cell 10:259–269

    CAS  PubMed  Google Scholar 

  15. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 83:4913–4917

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Schilling B, Gafni J, Torcassi C, Cong X, Row RH et al (2006) Huntingtin phosphorylation sites mapped by mass spectrometry. Modulation of cleavage and toxicity. J Biol Chem 281:23686–23697

    CAS  PubMed  Google Scholar 

  17. Fei E, Jia N, Zhang T, Ma X, Wang H et al (2007) Phosphorylation of ataxin-3 by glycogen synthase kinase 3beta at serine 256 regulates the aggregation of ataxin-3. Biochem Biophys Res Commun 357:487–492

    CAS  PubMed  Google Scholar 

  18. Arai T, Hasegawa M, Nonoka T, Kametani F, Yamashita M et al (2010) Phosphorylated and cleaved TDP-43 in ALS, FTLD and other neurodegenerative disorders and in cellular models of TDP-43 proteinopathy. Neuropathology 30:170–181

    PubMed  Google Scholar 

  19. Bondareff W, Wischik CM, Novak M, Amos WB, Klug A, Roth M (1990) Molecular analysis of neurofibrillary degeneration in Alzheimer’s disease. An immunohistochemical study. Am J Pathol 137:711–723

    CAS  PubMed  Google Scholar 

  20. Kalchman MA, Graham RK, Xia G, Koide HB, Hodgson JG et al (1996) Huntingtin is ubiquitinated and interacts with a specific ubiquitin- conjugating enzyme. J Biol Chem 271:19385–19394

    CAS  PubMed  Google Scholar 

  21. Poukka H, Karvonen U, Janne OA, Palvimo JJ (2000) Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc Natl Acad Sci USA 97:14145–14150

    CAS  PubMed  Google Scholar 

  22. de Pril R, Fischer DF, Roos RA, van Leeuwen FW (2007) Ubiquitin-conjugating enzyme E2–25 K increases aggregate formation and cell death in polyglutamine diseases. Mol Cell Neurosci 34:10–19

    PubMed  Google Scholar 

  23. Maynard CJ, Böttcher C, Ortega Z, Smith R, Florea BI et al (2009) Accumulation of ubiquitin conjugates in a polyglutamine disease model occurs without global ubiquitin/proteasome system impairment. Proc Natl Acad Sci U S A 106:13986–13991

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Sasaki N, Fukatsu R, Tsuzuki K, Hayashi Y, Yoshida T et al (1998) Advanced glycation end products in Alzheimer’s disease and other neurodegenerative diseases. Am J Pathol 153:1149–1155

    CAS  PubMed  Google Scholar 

  25. Ma L, Nicholson LF (2004) Expression of the receptor for advanced glycation end products in Huntington’s disease caudate nucleus. Brain Res 1018:10–17

    CAS  PubMed  Google Scholar 

  26. Padmaraju V, Bhaskar JJ, Prasada Rao UJ, Salimath PV, Rao KS (2011) Role of advanced glycation on aggregation and DNA binding properties of α-synuclein. J Alzheimers Dis 24(Suppl 2):211–221

    CAS  PubMed  Google Scholar 

  27. Wang JZ, Grundke-Iqbal I, Iqbal K (1996) Glycosylation of microtubule-associated protein tau: An abnormal posttranslational modification in Alzheimer’s disease. Nat Med 2:871–875

    CAS  PubMed  Google Scholar 

  28. Marz P, Stetefeld J, Bendfeldt K, Nitsch C, Reinstein J et al (2006) Ataxin-10 interacts with O-linked beta-N-acetylglucosamine transferase in the brain. J Biol Chem 281:20263–20270

    PubMed  Google Scholar 

  29. Horiguchi T, Uryu K, Giasson BI, Ischiropoulos H, LightFoot R et al (2003) Nitration of tau protein is linked to neurodegeneration in tauopathies. Am J Pathol 163:1021–1031

    CAS  PubMed  Google Scholar 

  30. Yu Z, Xu X, Xiang Z, Zhou J, Zhang Z, Hu C, He C (2010) Nitrated alpha-synuclein induces the loss of dopaminergic neurons in the substantia nigra of rats. PLoS One 5:e9956

    PubMed Central  PubMed  Google Scholar 

  31. Steffan JS, Agrawal N, Pallos J, Rockabrand E, Trotman LC et al (2004) SUMO modification of huntingtin and Huntington’s disease pathology. Science 304:100–104

    CAS  PubMed  Google Scholar 

  32. Riley BE, Zoghbi HY, Orr HT (2005) SUMOylation of the polyglutamine repeat protein, ataxin-1, is dependent on a functional nuclear localization signal. J Biol Chem 280:21942–21948

    CAS  PubMed  Google Scholar 

  33. Dorval V, Fraser PE (2006) Small ubiquitin-like modifier (SUMO) modification of natively unfolded proteins tau and alpha-synuclein. J Biol Chem 281:9919–9924

    CAS  PubMed  Google Scholar 

  34. Kim YM, Jang WH, Quezado MM, Oh Y, Chung KC, Junn E, Mouradian MM (2011) Proteasome inhibition induces α-synuclein SUMOylation and aggregate formation. J Neurol Sci 307:157–161

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Harper PS, Youngman S, Anderson MA, Sarfarazi M, Quarrell O, Tanzi R et al (1985) Genetic linkage between Huntington’s disease and the DNA polymorphism G8 in South Wales families. J Med Genet 22:447–450

    CAS  PubMed  Google Scholar 

  36. Yoshioka K, Miki T, Katsuya T, Ogihara T, Sakaki Y (1991) The 717Val–Ile substitution in amyloid precursor protein is associated with familial Alzheimer’s disease regardless of ethnic groups. Biochem Biophys Res Commun 178:1141–1146

    CAS  PubMed  Google Scholar 

  37. Wszolek ZK, Cordes M, Calne DB, Münter MD, Cordes I, Pfeifer RF (1993) Hereditary Parkinson disease: Report of 3 families with dominant autosomal inheritance. Nervenarzt 64:331–335

    CAS  PubMed  Google Scholar 

  38. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    CAS  PubMed  Google Scholar 

  39. Spillantini MG, Murrell JR, Goedert M, Farlow MR, Klug A, Ghetti B (1998) Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci U S A 95:7737–7741

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18:106–108

    CAS  PubMed  Google Scholar 

  41. Zareparsi S, Kaye J, Camicioli R, Kramer P, Nutt J, Bird T, Litt M, Payami H (1998) Analysis of the alpha-synuclein G209A mutation in familial Parkinson’s disease. Lancet 351:37–38

    CAS  PubMed  Google Scholar 

  42. De Jonghe C, Esselens C, Singh SK, Craessaerts K, Serneels S et al (2001) Pathogenic APP mutations near the γ-secretase cleavage site differentially affect Aβ secretion and APP C-terminal fragment stability. Hum Mol Genet 10:1665–1671

    PubMed  Google Scholar 

  43. Squitieri F, Gellera C, Cannella M, Mariotti C, Cislaghi G et al (2003) Homozygosity for CAG mutation in Huntington disease is associated with a more severe clinical course. Brain 126:946–955

    PubMed  Google Scholar 

  44. Kovacech B, Skrabana R, Novak M (2010) Transition of tau protein from disordered to misordered in Alzheimer’s disease. Neurodegener Dis 7:24–27

    CAS  PubMed  Google Scholar 

  45. Cente M, Filipcik P, Pevalova M, Novak M (2006) Expression of a truncated tau protein induces oxidative stress in a rodent model of tauopathy. Eur J Neurosci 24:1085–1090

    PubMed  Google Scholar 

  46. Quintanilla RA, Matthews-Roberson TA, Dolan PJ, Johnson GV (2009) Caspase-cleaved tau expression induces mitochondrial dysfunction in immortalized cortical neurons: Implications for the pathogenesis of Alzheimer disease. J Biol Chem 284:18754–18766

    CAS  PubMed  Google Scholar 

  47. Amadoro G, Corsetti V, Stringaro A, Colone M, D’Aguanno S et al (2010) A NH2 tau fragment targets neuronal mitochondria at AD synapses: Possible implications for neurodegeneration. J Alzheimers Dis 21:445–470

    CAS  PubMed  Google Scholar 

  48. Siman R, Card JP, Davis LG (1990) Proteolytic processing β-amyloid precursor by calpain I. J Neurosci 70:2400–2411

    Google Scholar 

  49. Nieto A, Correas I, López-Otín C, Avila J (1991) Tau-related protein present in paired helical filaments has a decreased tubulin binding capacity as compared with microtubule-associated protein tau. Biochim Biophys Acta 1096:197–204

    CAS  PubMed  Google Scholar 

  50. Zilka N, Filipcik P, Koson P, Fialova L, Skrabana R et al (2006) Truncated tau from sporadic Alzheimer’s disease suffices to drive neurofibrillary degeneration in vivo. FEBS Lett 580:3582–3588

    CAS  PubMed  Google Scholar 

  51. Galvan V, Gorostiza OF, Banwait S, Ataie M, Logvinova AV et al (2006) Reversal of Alzheimer’s-like pathology and behavior in human APP transgenic mice by mutation of Asp664. Proc Natl Acal Sci 103:7130–7135

    CAS  Google Scholar 

  52. Liu CW, Giasson BI, Lewis KA, Lee VM, Demartino GN, Thomas PJ (2005) A precipitating role for truncated alpha-synuclein and the proteasome in alpha-synuclein aggregation: Implications for pathogenesis of Parkinson’s disease. J Biol Chem 280:22670–22678

    CAS  PubMed  Google Scholar 

  53. Dufty BM, Warner LR, Hou ST, Jiang SX, Gomez-Isla T et al (2007) Calpain-cleavage of α-synuclein connecting proteolytic processing to disease-linked aggregation. Am J Pathol 170:1725–1738

    CAS  PubMed  Google Scholar 

  54. DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277:1990–1993

    CAS  PubMed  Google Scholar 

  55. Hackam AS, Singaraja R, Wellington CL, Metzler M, McCutcheon K, Zhang T, Kalchman M, Hayden MR (1998) The influence of huntingtin protein size on nuclear localization and cellular toxicity. J Cell Biol 141:1097–1105

    CAS  PubMed  Google Scholar 

  56. Hackam AS, Singaraja R, Zhang T, Gan L, Hayden MR (1999) In vitro evidence for both the nucleus and cytoplasm as subcellular sites of pathogenesis in Huntington’s disease. Hum Mol Genet 8:25–33

    CAS  PubMed  Google Scholar 

  57. Wellington CL, Singaraja R, Ellerby L, Savill J, Roy S et al (2000) Inhibiting caspase cleavage of huntingtin reduces toxicity and aggregate formation in neuronal and nonneuronal cells. J Biol Chem 275:19831–19838

    CAS  PubMed  Google Scholar 

  58. Mende-Mueller LM, Toneff T, Hwang SR, Chesselet MF, Hook VY (2001) Tissue-specific proteolysis of Huntingtin (htt) in human brain: Evidence of enhanced levels of N- and C-terminal htt fragments in Huntington’s disease striatum. J Neurosci 21:1830–1837

    CAS  PubMed  Google Scholar 

  59. Gafni J, Ellerby LM (2002) Calpain activation in Huntington’s disease. J Neurosci 22:4842–4849

    CAS  PubMed  Google Scholar 

  60. Ikeda H, Yamaguchi M, Sugai S, Aze Y, Narumiya S, Kakizuka A (1996) Expanded polyglutamine in the Machado–Joseph disease protein induces cell death in vitro and in vivo. Nat Genet 13:196–202

    CAS  PubMed  Google Scholar 

  61. Goti D, Katzen SM, Mez J, Kurtis N, Kiluk J et al (2004) A mutant ataxin-3 putative-cleavage fragment in brains of Machado–Joseph disease patients and transgenic mice is cytotoxic above a critical concentration. J Neurosci 24:10266–10279

    CAS  PubMed  Google Scholar 

  62. Haacke AF, Hartl U, Breuer P (2007) Calpain inhibition is sufficient to suppress aggregation of polyglutamine-expanded ataxin-3. J Biol Chem 282:18851–18856

    CAS  PubMed  Google Scholar 

  63. Young JE, Gouw L, Propp S, Sopher BL, Taylor J et al (2007) Proteolytic cleavage of ataxin-7 by caspase-7 modulates cellular toxicity and transcriptional dysregulation. J Biol Chem 282:30150–30160

    CAS  PubMed  Google Scholar 

  64. Arai T, Ikeda K, Akiyama H, Nonaka T, Hasegawa M et al (2004) Identification of amino-terminally cleaved tau fragments that distinguish progressive supranuclear palsy from corticobasal degeneration. Ann Neurol 55:72–79

    CAS  PubMed  Google Scholar 

  65. Mondragón-Rodríguez S, Mena R, Binder LI, Smith MA, Perry G, García-Sierra F (2008) Conformational changes and cleavage of tau in Pick bodies parallel the early processing of tau found in Alzheimer pathology. Neuropathol Appl Neurobiol 34:62–75

    PubMed  Google Scholar 

  66. Nonaka T, Kametani F, Arai T, Akiyama H, Hasegawa M (2009) Truncation and pathogenic mutations facilitate the formation of intracellular aggregates of TDP-43. Hum Mol Genet 18:3353–3364

    CAS  PubMed  Google Scholar 

  67. Guillozet-Bongaarts AL, Garcia-Sierra F, Reynolds MR, Horowitz PM et al (2005) Tau truncation during neurofibrillary tangle evolution in Alzheimer’s disease. Neurobiol Aging 26:1015–1022

    CAS  PubMed  Google Scholar 

  68. Zhou A, Webb G, Zhu X, Steiner DF (1999) Proteolysis processing in the secretory pathway. J Biol Chem 274:20745–20748

    CAS  PubMed  Google Scholar 

  69. Novak M, Wischik CM, Edwards PC, Panell R, Milstein C (1989) Characterization of the first monoclonal antibody against the pronase resistant core of the Alzheimer PHF. Prog Clin Biol Res 317:755–761

    CAS  PubMed  Google Scholar 

  70. Novak M, Jakes R, Edwards PC, Milstein C, Wischik CM (1991) Difference between the tau protein of Alzheimer paired helical filament core and normal tau revealed by epitope analysis of monoclonal antibodies 423 and 7.51. Proc Natl Acad Sci USA 88:5837–5841

    CAS  PubMed  Google Scholar 

  71. Koson P, Zilka N, Kovac A, Kovacech B, Korenova M, Filipcik P, Novak M (2008) Truncated tau expression levels determine life span of a rat model of tauopathy without causing neuronal loss or correlating with terminal neurofibrillary tangle load. Eur J Neurosci 28:239–246

    PubMed  Google Scholar 

  72. Filipcik P, Zilka N, Bugos O, Kucerak J, Koson P, Novak P, Novak M (2012) First transgenic rat model developing progressive cortical neurofibrillary tangles. Neurobiol Aging 33:1448–1456

    PubMed  Google Scholar 

  73. Abraha A, Ghoshal N, Gamblin TC, Cryns V, Berry RW, Kuret J, Binder LI (2000) C-terminal inhibition of tau assembly in vitro and in Alzheimer’s disease. J Cell Sci 113(Pt 21):3737–3745

    CAS  PubMed  Google Scholar 

  74. Gamblin TC, Chen F, Zambrano A, Abraha A, Lagalwar S et al (2003) Caspase cleavage of tau: Linking amyloid and neurofibrillary tangles in Alzheimer’s disease. Proc Natl Acad Sci USA 100:10032–10037

    CAS  PubMed  Google Scholar 

  75. Rissman RA, Poon WW, Blurton-Jones M, Oddo S, Torp R et al (2004) Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology. J Clin Invest 114:121–130

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Cotman CW, Poon WW, Rissman RA, Blurton-Jones M (2005) The role of caspase cleavage of tau in Alzheimer disease neuropathology. J Neuropathol Exp Neurol 64:104–112

    CAS  PubMed  Google Scholar 

  77. deCalignon A, Fox LM, Pitstick R, Carlson GA, Bacskai BJ, Spires-Jones TL, Hyman BT (2010) Caspase activation precedes and leads to tangles. Nature 464:1201–1204

    CAS  Google Scholar 

  78. Spires-Jones TL, de Calignon A, Matsui T, Zehr C, Pitstick R et al (2008) In vivo imaging reveals dissociation between caspase activation and acute neuronal death in tangle-bearing neurons. J Neurosci 28:862–867

    CAS  PubMed  Google Scholar 

  79. Amadoro G, Serafino AL, Barbato C, Ciotti MT, Sacco A, Calissano P, Canu N (2004) Role of N-terminal tau domain integrity on the survival of cerebellar granule neurons. Cell Death Differ 11:217–230

    CAS  PubMed  Google Scholar 

  80. Zilkova M, Zilka N, Kovac A, Kovacech B, Skrabana R, Skrabanova M, Novak M (2011) Hyperphosphorylated truncated protein tau induces caspase-3 independent apoptosis-like pathway in the Alzheimer’s disease cellular model. J Alzheimers Dis 23:161–169

    CAS  PubMed  Google Scholar 

  81. Hoogeveen AT, Willemsen R, Meyer N, de Rooij KE, Roos RA, van Ommen GJ, Galjaard H (1993) Characterization and localization of the Huntington disease gene product. Hum Mol Genet 2:2069–2073

    CAS  PubMed  Google Scholar 

  82. Becher MW, Kotzuk JA, Sharp AH, Davies SW, Bates GP, Price DL, Ross C (1998) Intranuclear neuronal inclusions in Huntington’s disease and dentatorubral and pallidoluysian atrophy: Correlation between the density of inclusions and IT15 CAG triplet repeat length. Neurobiol Dis 4:387–397

    CAS  PubMed  Google Scholar 

  83. Wellington CL, Ellerby LM, Hackam AS, Margolis RL, Trifiro MA et al (1998) Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J Biol Chem 273:9158–6917

    CAS  PubMed  Google Scholar 

  84. Sieradzan KA, Mechan AO, Jones L, Wanker EE, Nukina N, Mann DM (1999) Huntington’s disease intranuclear inclusions contain truncated, ubiquitinated huntingtin protein. Exp Neurol 156:92–99

    CAS  PubMed  Google Scholar 

  85. Lee JA, Lim CS, Lee SH, Kim H, Nukina N, Kaang BK (2003) Aggregate formation and the impairment of long-term synaptic facilitation by ectopic expression of mutant huntingtin in Aplysia neurons. J Neurochem 85:160–169

    CAS  PubMed  Google Scholar 

  86. Martindale D, Hackam A, Wieczorek A, Ellerby L, Wellington C et al (1998) Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates. Nat Genet 18:150–154

    CAS  PubMed  Google Scholar 

  87. Cooper JK, Schilling G, Peters MF, Herring WJ, Sharp AH et al (1998) Truncated N-terminal fragments of huntingtin with expanded glutamine repeats form nuclear and cytoplasmic aggregates in cell culture. Hum Mol Genet 7:783–790

    CAS  PubMed  Google Scholar 

  88. Gervais F, Xu D, Robertson G, Vaillancourt J, Zhu Y et al (1999) Involvement of caspases in proteolytic cleavage of Alzheimer’s b-amyloid precursor protein and amyloidogenic b-peptide formation. Cell 97:395–406

    CAS  PubMed  Google Scholar 

  89. Selkoe DJ (2008) Biochemistry and molecular biology of amyloid beta-protein and the mechanism of Alzheimer’s disease. Handb Clin Neurol 89:245–260

    PubMed  Google Scholar 

  90. Chow VW, Mattson MP, Wong PC, Gleichmann M (2010) An overview of APP processing enzymes and products. Neuromol Med 12:1–12

    CAS  Google Scholar 

  91. Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK (2006). Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer's disease brain is associated with mitochondrial dysfunction. J Neurosci 26:9057–9068

    Google Scholar 

  92. Baba M, Nakajo S, Tu PH, Tomita T, Nakaya K, Lee VM, Trojanowski JQ, Iwatsubo T (1998) Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am J Pathol 152:879–884

    CAS  PubMed  Google Scholar 

  93. Anderson JP, Walker DE, Goldstein JM, de Laat R, Banducci K et al (2000) Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem 281:29739–29752

    Google Scholar 

  94. Campbell BC, McLean CA, Culvenor JG, Gai WP, Blumbergs PC et al (2001) The solubility of alpha-synuclein in multiple system atrophy differs from that of dementia with Lewy bodies and Parkinson’s disease. J Neurochem 76:87–96

    CAS  PubMed  Google Scholar 

  95. Hoyer W, Cherny D, Subramaniam V, Jovin TM (2004) Impact of the acidic C-terminal region comprising amino acids 109–140 on alphasynuclein aggregation in vitro. Biochemistry 43:16233–16242

    CAS  PubMed  Google Scholar 

  96. Sung JY, Park SM, Lee CH, Um JW, Lee HJ et al (2005) Proteolytic cleavage of extracellular secreted α-synuclein via matrix metalloproteinases. J Biol Chem 280:25216–25224

    CAS  PubMed  Google Scholar 

  97. Li W, West N, Colla E, Pletnikova O, Troncoso JC et al (2005) Aggregation promoting C-terminal truncation of alpha-synuclein is a normal cellular process and is enhanced by the familial Parkinson’s disease-linked mutations. Proc Natl Acad Sci USA 102:2162–2167

    CAS  PubMed  Google Scholar 

  98. Levitan K, Chereau D, Cohen SI, Knowles TP, Dobson CM et al (2011) Conserved C-terminal charge exerts a profound influence on the aggregation rate of α-synuclein. J Mol Biol 411:329–333

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Michell AW, Tofaris GK, Gossage H, Tyers P, Spillantini MG, Barker RA (2007) The effect of truncated human alpha-synuclein (1–120) on dopaminergic cells in a transgenic mouse model of Parkinson’s disease. Cell Transplant 16:461–474

    CAS  PubMed  Google Scholar 

  100. Daher JPL, Ying M, Banerjee R, McDonald RS, Hahn MD et al (2009) Conditional transgenic mice expressing C-terminally truncated human α-synuclein (αSyn119) exhibit reduced striatal dopamine without loss of nigrostriatal pathway dopaminergic neurons. Mol Neurodegener 4:34. doi:10.1186/1750-1326-4-34

    PubMed Central  PubMed  Google Scholar 

  101. Serpell LC, Berriman J, Jakes R, Goedert M, Crowther RA (2000) Fiber diffraction of synthetic α-synuclein filaments shows amyloid-like cross-β conformation. Proc Natl Acad Sci USA 97:4897–4902

    CAS  PubMed  Google Scholar 

  102. Igaz LM, Kwong LK, Xu Y, Truax AC, Uryu K, Neumann M et al (2008) Enrichment of C-terminal fragments in TAR DNA-binding protein-43 cytoplasmic inclusions in brain but not in spinal cord of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Am J Pathol 173:182–194

    CAS  PubMed  Google Scholar 

  103. Igaz LM, Kwong LK, Chen-Plotkin A, Winton MJ, Unger TL et al (2009) Expression of TDP-43 C-terminal fragments in vitro recapitulates pathological features of TDP-43 proteinopathies. J Biol Chem 284:8516–8524

    CAS  PubMed  Google Scholar 

  104. Timmer JC, Salvesan GS (2007) Caspase substrates. Cell Death Differ 14:66–72

    CAS  PubMed  Google Scholar 

  105. Tompa P et al (2004) On the sequential determinants of calpain cleavage. J Biol Chem 279:20775–20785

    CAS  PubMed  Google Scholar 

  106. Gafni J, Hermel E, Young JE, Wellington CL, Hayden MR, Ellerby LM (2004) Inhibition of calpain cleavage of huntingtin reduces toxicity: Accumulation of calpain/caspase fragments in the nucleus. J Biol Chem 279:20211–20220

    CAS  PubMed  Google Scholar 

  107. Yang LS, Ksiezak-Reding H (1995) Calpain induced proteolysis of normal human tau and tau associated with paired helical filaments. Eur J Biochem 233:9–17

    CAS  PubMed  Google Scholar 

  108. Kim HJ, Lee D, Lee CH, Chung KC, Kim J, Paik SR (2006) Calpain-resistant fragment(s) of alpha-synuclein regulates the synuclein-cleaving activity of 20S proteasome. Arch Biochem Biophy 455:40–47

    CAS  Google Scholar 

  109. Guillozet-Bongaarts AL, Glajch KE, Libson EG, Cahill ME, Bigio E, Berry RW, Binder LI (2007) Phosphorylation and cleavage of tau in non-AD tauopathies. Acta Neuropathol 113:513–520

    CAS  PubMed  Google Scholar 

  110. Schilling G, Wood JD, Duan K, Slunt HH, Gonzales V et al (1999) Nuclear accumulation of truncated atrophin-1 fragments in a transgenic mouse model of DRPLA. Neuron 24:275–286

    CAS  PubMed  Google Scholar 

  111. Sydow A, Van der Jeugd A, Zheng F, Ahmed T, Balschun D, Petrova O, Drexler D, Zhou L, Rune G, Mandelkow E, D’Hooge R, Alzheimer C, Mandelkow EM (2011) Tau-induced defects in synaptic plasticity, learning, and memory are reversible in transgenic mice after switching off the toxic Tau mutant. J Neurosci 31:2511–2525

    CAS  PubMed  Google Scholar 

  112. Gil JM, Rego AC (2008) Mechanisms of neurodegeneration in Huntington’s disease. Eur J Neurosci 27:2803–2820

    PubMed  Google Scholar 

  113. Warby SC, Doty CN, Graham RK, Carroll JB, Yang YZ, Singaraja RR, Overall CM, Hayden MR (2008) Activated caspase-6 and caspase-6-cleaved fragments of huntingtin specifically colocalize in the nucleus. Hum Mol Genet 17:2390–2404

    CAS  PubMed  Google Scholar 

  114. Saudou F, Finkbeiner S, Devys D, Greenberg ME (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95:55–66

    CAS  PubMed  Google Scholar 

  115. Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S (2004) Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431:805–810

    CAS  PubMed  Google Scholar 

  116. Xu S, Zhou M, Yu S, Cai Y, Zhang A, Uéda K, Chan P (2006) Oxidative stress induces nuclear translocation of C-terminus of alpha-synuclein in dopaminergic cells. Biochem Biophys Res Commun 342:330–335

    CAS  PubMed  Google Scholar 

  117. Neumann M, Sampathu DM, Kwong LK, Truax AD, Micsenyi MC et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133

    CAS  PubMed  Google Scholar 

  118. Pesiridis GS, Tripathy K, Tanik S, Trojanowski JQ, Lee VM (2011) A “two-hit” hypothesis for inclusion formation by carboxyl-terminal fragments of TDP-43 protein linked to RNA depletion and impaired microtubule-dependent transport. J Biol Chem 286:18845–18855

    CAS  PubMed  Google Scholar 

  119. Perez MK, Paulson HL, Pendse SJ, Saionz SJ, Bonini NM, Pittman RN (1998) Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation. J Cell Biol 143:1457–1470

    CAS  PubMed  Google Scholar 

  120. Kenessey A, Nacharaju P, Ko LW, Yen SH (1997) Degradation of tau by lysosomal enzyme cathepsin D: Implication for Alzheimer neurofibrillary degeneration. J Neurochem 69:2026–2038

    CAS  PubMed  Google Scholar 

  121. Zhang L, Sheng R, Qin Z (2009) The lysozome and neurodegenerative diseases. Acta Biochim Biophys Sin 41:437–445

    CAS  PubMed  Google Scholar 

  122. Johnson GV, Jope RS, Binder LI (1989) Proteolysis of tau by calpain. Biochem Biophys Res Commun 29:1505–1511

    Google Scholar 

  123. Huang Y, Wang KK (2001) The calpain family and human disease. Trends Mol Med 7:355–362

    CAS  PubMed  Google Scholar 

  124. Wang KK, Villalobo A, Roufogalis BD (1989) Calmodulin-binding proteins as calpain substrates. J Biol Chem 262:693–706

    CAS  Google Scholar 

  125. Pariat M et al (2001) The sensitivity of c-Jun and c-Fos proteins to calpains depends on conformational determinants of the monomers and not on formation of dimers. Biochem J 345(pt1):129–138

    Google Scholar 

  126. Sasaki T, Kikuchi T, Yumoto N, Yoshimura N, Murachi T (1984) Comparative specificity and kinetic studies on porcine calpain I and calpain II with naturally occurring peptides and synthetic fluorogenic substrates. J Biol Chem 259:12489–12494

    CAS  PubMed  Google Scholar 

  127. Bussiere T, Wicinsky B, Lin GI, Perl DP, Davies P, Nixon R, Morrison JH, Hof PR (1999) Early neurodegenerative alterations in the cerebral cortex during normal aging and Alzheimer’s disease. S Neurosci Abst 25:593

    Google Scholar 

  128. Saito K, Elce JS, Hamos JE, Nixon R (1993) A. wide spread activation of calpain activated neutral proteinase (calpain) in brain in Alzheimer’s disease: A potential molecular basis for neuronal degeneration. Proc Natl Acad Sci USA 90:2628–2632

    CAS  PubMed  Google Scholar 

  129. Grynspan F, Griffin WR, Cataldo A, Katayama S, Nixon RA (1997) Active site-directed antibodies identify calpain II as an early-appearing and pervasive component of neurofibrillary pathology in Alzheimer’s disease. Brain Res 763:145–158

    CAS  PubMed  Google Scholar 

  130. Park SY, Ferreira A (2005) The generation of a 17 kDa neurotoxic fragment: An alternative mechanism by which tau mediates beta-amyloid-induced neurodegeneration. J Neurosci 25:5365–5375

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Ferreira A, Bigio EH (2011) Calpain-mediated tau cleavage: A mechanism leading to neurodegeneration shared by multiple tauopathies. Mol Med 17:676–685

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng I-I, Jones DP, Wang X (1997) Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked. Science 275:1128–1132

    Google Scholar 

  133. Higaki J, Quon D, Zhong Z, Cordell B (1995) Inhibition of beta-amyloid formation identifies proteolytic precursors and subcellular site of catabolism. Neuron 14:651–659

    CAS  PubMed  Google Scholar 

  134. Rechsteiner M, Rogers S, Rote K (1987) Protein-structure and intracellular stability. Trends Biochem Sci 12:390–394

    CAS  Google Scholar 

  135. Dong Y, Tan J, Cui MZ, Zhao G, Mao G, Singh N, Xu X (2005) Calpain inhibitor MDL 28170 modulates A β formation by inhibiting the formation of intermediate Aβ46 and protecting A β from degradation. FASEB J. doi:10.1096/fj.05-4524fje

  136. Figueiredo-Pereira ME, Efthimiopoulos S, Tezapsidis N, Buku GJ, Mehta P, Robakis NK (1999) Distinct secretases, a cysteine protease and a serine protease, generate the C termini of amyloid b-proteins Ab1–40 and Ab1–42, respectively J. Neurochem 72:1417–1422

    CAS  Google Scholar 

  137. Mishizen-Eberz AJ, Guttmann RP, Giasson BI, Day GA, Hodara R, Ischiropoulos H, Lee VMY, Trojanowski JQ, Lynch DR (2003) Distinct cleavage patterns of normal and pathologic forms of a-synuclein by calpain I in vitro. J Neurochem 86:836–847

    CAS  PubMed  Google Scholar 

  138. Sanchez I, Xu CJ, Juo P, Kakizaka A, Blenis J, Yuan J (1999) Caspase-8 is required for cell death induced by expanded polyglutamine repeats. Neuron 22:623–633

    CAS  PubMed  Google Scholar 

  139. Hodgson JG, Agopyan N, Gutekunst CA, Leavitt BR, LePiane F et al (1999) A YAC mouse model for Huntington’s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 23(1):181–92

    CAS  PubMed  Google Scholar 

  140. Paulson HL, Perez MK, Trottier Y, Trojanowski JQ, Subramony SH et al (1997) Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 19:333–344

    CAS  PubMed  Google Scholar 

  141. Gould VFC, Goti D, Pearce D, Gonzalez GA, Gao H et al (2003) A Mutant Ataxin-3 Fragment results from processing at a site nterminal to amino acid 190 in brain of Machado–Joseph disease-like transgenic mice. Neurobiol Dis 27:362–369

    Google Scholar 

  142. Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: Structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383–424

    CAS  PubMed  Google Scholar 

  143. Wellington CL, Ellerby LM, Gutekunst CA, Rogers D, Warby S et al (2002) Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington’s disease. J Neurosci 22:7862–7872

    CAS  PubMed  Google Scholar 

  144. Zhao M, Sua J, Heada E, Cotman CW (2003) Accumulation of caspase cleaved amyloid precursor protein represents an early neurodegenerative event in aging and in Alzheimer’s disease. Neurobiol Dis 14:391–403

    CAS  PubMed  Google Scholar 

  145. Horowitz PM, Patterson KR, Guillozet-Bongaarts AL, Reynolds MR, Carroll CA et al (2004) Early N-terminal changes and caspase-6 cleavage of tau in Alzheimer’s disease. J Neurosci 24:7895–7902

    CAS  PubMed  Google Scholar 

  146. Ghoshal N, García-Sierra F, Wuu J, Leurgans S, Bennett DA, Berry RW, Binder LI (2002) Tau conformational changes correspond to impairments of episodic memory in mild cognitive impairment and Alzheimer’s disease. Exp Neurol 177:475–493

    CAS  PubMed  Google Scholar 

  147. Hart MJ, Glicksman M, Liu M, Sharma MK, Cuny G, Galvan V (2012) Development of a high-throughput screen targeting caspase-8-mediated cleavage of the amyloid precursor protein. Anal Biochem 421:467–476

    CAS  PubMed  Google Scholar 

  148. Mejia RO, Friedlander RM (2001) Caspases in Huntington’s disease. Neuroscientist 7:480–489

    Google Scholar 

  149. Graham RK, Deng Y, Carroll J, Vaid K, Cowan C et al (2010) Cleavage at the 586 amino acid caspase-6 site in mutant huntingtin influences caspase-6 activation in vivo. J Neurosci 30:15019–15029

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Zhang Y, Ona VO, Li M, Drozda M, Dubois-Dauphin M et al (2003) Sequential activation of individual caspases, and of alterations in Bcl-2 proapoptotic signals in a mouse model of Huntington’s disease. J Neurochem 87:1184–1192

    CAS  PubMed  Google Scholar 

  151. Chen M, Ona VO, Li M, Ferrante RJ, Fink KB et al (2000) Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med 6:797–801

    CAS  PubMed  Google Scholar 

  152. Wang GH, Mitsui K, Kotliarova S, Yamashita A, Nagao Y et al (1999) Caspase activation during apoptotic cell death induced by expanded polyglutamine in N2a cells. Neuroreport 10:2435–2438

    CAS  PubMed  Google Scholar 

  153. Rigamonti D, Bauer JH, De-Fraja C, Conti L, Sipione S et al (2000) Wild-type huntingtin protects from apoptosis upstream of caspase-3. J Neurosci 20:3705–3713

    CAS  PubMed  Google Scholar 

  154. Zhang Y, Leavitt BR, van Raamsdonk JM, Dragatsis I, Goldowitz D et al (2006) Huntingtin inhibits caspase-3 activation. EMBO J 25:5896–5906

    CAS  PubMed  Google Scholar 

  155. Ona VO, Li M, Vonsattel JP, Andrews LJ, Khan SQ et al (1999) Inhibition of caspase-1 slows disease progression in a mouse model of Huntington’s disease. Nature 399:263–267

    CAS  PubMed  Google Scholar 

  156. Rohn TY (2008) Caspase-Cleaved TAR DNA Binding protein-43 is a major pathological finding in Alzheimer’s disease. Brain Res 1228:189–198

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Berke SJS, Schmied FAF, Brunt ER, Ellerby LM, Paulson HL (2004) Caspase-mediated proteolysis of polyglutamine disease protein ataxin-3. J Neurochem 89:908–918

    CAS  PubMed  Google Scholar 

  158. Rohn TT, Kokoulina P (2009) Caspase-cleaved TAR DNA-binding protein-43 in Pick's disease. Int J Physio Pathophysio Pharmacol 20:24–31

    Google Scholar 

  159. Zhang YJ, Xu YF, Dickey CA, Buratti E, Baralle F et al (2007) Progranulin mediates caspase-dependent cleavage of TAR DNA binding protein-43. J Neurosci 27:10530–10534

    CAS  PubMed  Google Scholar 

  160. Johnson BS, McCaffery M, Lindquist S, Gitler AD (2008) A yeast TDP-43 proteinopathy model: Exploring the molecular determinants of TDP-43 aggregation and cellular toxicity. Proc Natl Acad Sci USA 105:6439–6444

    CAS  PubMed  Google Scholar 

  161. Kornfeld S (1992) Structure and function of the mannose 6-phosphate/insulin like growth factor II receptors. Ann Rev Biochem 61:307–330

    CAS  PubMed  Google Scholar 

  162. Cataldo AM, Nixon RA (1990) Enzymatically active lysosomal proteases are associated with amyloid deposits in Alzheimer brain. Proc Natl Acad Sci USA 87:3861–3865

    CAS  PubMed  Google Scholar 

  163. Cataldo AM, Paskevich PA, Kominami E, Nixon RA (1991) Lysosomal hydrolases of different classes are abnormally distributed in Alzheimer brain. Proc Natl Acad Sci USA 88:10998–11002

    CAS  PubMed  Google Scholar 

  164. Cataldo AM, Hamilton DJ, Nixon RA (1994) Lysosomal abnormalities in degenerating neurons link neuronal compromise to senile plaque development in Alzheimer’s disease. Brain Res 640:68–80

    CAS  PubMed  Google Scholar 

  165. Cataldo AM, Barnett JL, Berman SA, Quarless S, Burztajn S, Lippa C, Nixon RA (1995) Gene expression and cellular content of cathepsin D in Alzheimer’s disease brain: Evidence for early up-regulation of the endosomal–lysosomal system. Neuron 14:671–680

    CAS  PubMed  Google Scholar 

  166. Jin LW, Maezawa I, Vincent I, Bird T (2004) Intracellular accumulation of amyloidogenic fragments of amyloid-β precursor protein in neurons with Niemann–Pick type C defects is associated with endosomal abnormalities. Am J Pathol 164:975–985

    CAS  PubMed  Google Scholar 

  167. Matej R, Botond G, László L, Kopitar-Jerala N, Rusina R, Budka H, Kovacs GG (2010) Increased neuronal Rab5 immunoreactive endosomes do not colocalize with TDP-43 in motor neuron disease. Exp Neurol 225:133–139

    CAS  PubMed  Google Scholar 

  168. Nixon RA, Cataldo AM (2006) Lysosomal system pathways: Genes to neurodegeneration in Alzheimer’s disease. J Alzheimers Dis 9:277–289

    CAS  PubMed  Google Scholar 

  169. Mackay EA, Ehrhard A, Moniatte M, Guenet C, Tardif C et al (1997) A possible role for cathepsins D, E, and B in the processing of beta-amyloid precursor protein in Alzheimer’s disease. Eur J Biochem 244:414–425

    CAS  PubMed  Google Scholar 

  170. Dreyer RN, Bausch KM, Fracasso P, Hammond LJ, Wunderlich D et al (1994) Processing of the pre-beta-amyloid protein by cathepsin D is enhanced by a familial Alzheimer’s disease mutation. Eur J Biochem 224:265–271

    CAS  PubMed  Google Scholar 

  171. Sadik G, Kaji H, Takeda K, Yamagata F, Kameoka Y, Hashimoto K, Miyanaga K, Shinoda T (1999) In vitro processing of amyloid precursor protein by cathepsin D. Int J Biochem Cell Biol 31:1327–1337

    CAS  PubMed  Google Scholar 

  172. Vigo-Pelfrey C, Lee D, Keim P, Lieberburg I, Schenk DB (1993) Characterization of beta-amyloid peptide from human cerebrospinal fluid. J Neurochem 61:1965–1968

    CAS  PubMed  Google Scholar 

  173. Higaki J, Catalano R, Guzzetta AW, Quon D, Navé JF, Tarnus C, D’Orchymont H, Cordell B (1996) Processing of b-amyloid precursor protein by cathepsin D. J Biol Chem 271:31885–31893

    CAS  PubMed  Google Scholar 

  174. Hook VYH, Kindy M, Hook G (2008) Inhibitors of cathepsin B improve memory and reduce β-amyloid in transgenic Alzheimer disease mice expressing the wild-type, but not the Swedish mutant, β-secretase site of the amyloid precursor protein. J Biol Chem 283:7745–7753

    CAS  PubMed  Google Scholar 

  175. Vassilacopoulou D, Ripellino JA, Tezapsidis N, Hook VYH, Robakis NK (1995) Full-length and truncated APP in chromaffin granules: Solubilization of granule membrane APP by a proteolytic mechanism. J Neurochem 64:2140–2146

    CAS  PubMed  Google Scholar 

  176. Hook V, Toneff T, Bogyo M, Greenbaum D, Medzihradszky KF et al (2005) Inhibition of cathepsin B reduces b-amyloid production in regulated secretory vesicles of neuronal chromaffin cells: Evidence for cathepsin B as a candidate b-secretase of Alzheimer’s disease. Biol Chem 386:931–940

    CAS  PubMed  Google Scholar 

  177. Takahashi M, Ko L, Kulathingal J, Jiang P, Sevlever D, Yen SC (2007) Oxidative stress-induced phosphorylation, degradation and aggregation of α-synuclein are linked to upregulated CK2 and cathepsin D. Eur J Neurosci 26:863–874

    PubMed  Google Scholar 

  178. Sevlever D, Jiang P, Yen SC (2008) Cathepsin D is the main lysosomal enzyme involved in the degradation of α-synuclein and generation of its carboxy-terminally truncated species. Biochem 47:9678–9687

    CAS  Google Scholar 

  179. Cullen V, Lindfors M, Ng J, Paetau A, Swinton E et al (2009) Cathepsin D expression level affects alpha-synuclein processing, aggregation, and toxicity in vivo. Mol Brain 2:5. doi:10.1186/1756-6606-2-5

    PubMed Central  PubMed  Google Scholar 

  180. Geiger T, Clarke S (1987) Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. J Biol Chem 262:785–94

    CAS  PubMed  Google Scholar 

  181. Wright HT (1991) Nonenzymatic deamidation of asparaginyl and glutaminyl residues in proteins. Crit Rev Biochem Mol Biol 26:1–52

    CAS  PubMed  Google Scholar 

  182. Watanabe A, Hong WK, Dohmae N, Takio K, Morishima-Kawashima M, Ihara Y (2004) Molecular aging of tau: Disulfide-independent aggregation and non-enzymatic degradation in vitro and in vivo. J Neurochem 90:1302–1311

    CAS  PubMed  Google Scholar 

  183. Watanabe A, Takio K, Ihara Y (1999) Deamidation and isoaspartate formation in smeared tau in paired helical filaments. Unusual properties of the microtubule-binding domain of tau. J Biol Chem 274:7368–7378

    CAS  PubMed  Google Scholar 

  184. Dunkelberger EB, Buchanan LE, Marek P, Cao P, Raleigh DP, Zanni MT (2012) Deamidation accelerates amyloid formation and alters amylin fiber structure. J Am Chem Soc 134:12658–12667

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Robinson NE, Robinson ML, Schulze SE, Lai BT, Gray HB (2009) Deamidation of alpha-synuclein. Protein Sci 18:1766–1773

    CAS  PubMed  Google Scholar 

  186. Hasan Q, Alluri RV, Rao P, Ahuja YR (2006) Role of glutamine deamidation in neurodegenerative diseases associated with triplet repeat expansion – a hypothesis. J Mol Neurosci 29:29–33

    CAS  PubMed  Google Scholar 

  187. Robinson NE, Robinson ZW, Robinson BR, Robinson AL, Robinson JA, Robinson ML, Robinson AB (2004) Structure-dependent nonenzymatic deamidation of glutaminyl and asparaginyl pentapeptides. J Pept Res 63:426–436

    CAS  PubMed  Google Scholar 

  188. Guo H, Albrecht S, Bourdeau M, Petzke T, Bergeron C, LeBlanc AC (2004) Active caspase-6 and caspase-6-cleaved tau in neuropil threads, neuritic plaques, and neurofibrillary tangles of Alzheimer’s disease. Am J Pathol 165:523–531

    CAS  PubMed  Google Scholar 

  189. Zhang Y, Xu Y, Cook C, Gendron TF, Roettges P et al (2009) Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proc Natl Acad Sci USA 106:7607–7612

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Axon Neuroscience and structural fund 26240220046.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Novak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jadhav, S., Zilka, N. & Novak, M. Protein Truncation as a Common Denominator of Human Neurodegenerative Foldopathies. Mol Neurobiol 48, 516–532 (2013). https://doi.org/10.1007/s12035-013-8440-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8440-8

Keywords

Navigation