Skip to main content

Advertisement

Log in

Alternatively Activated Macrophages in Spinal Cord Injury and Remission: Another Mechanism for Repair?

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Tissues within the central nervous system (CNS) have generally been regarded as immunologically privileged. However, in recent decades, it has been shown that immune reactions in the CNS continuously occur via various types of inflammation following autoimmune diseases and mechanical insults such as spinal cord injury (SCI). Among the various inflammatory cells associated with CNS disease, activated macrophages are classically known to induce detrimental consequences that are mediated by the secretion of pro-inflammatory molecules. Alternatively activated macrophages have recently been shown to modulate various types of CNS inflammation, including SCI. This review summarizes the potential roles of alternatively activated macrophages in the course of CNS inflammation in rodent SCI models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BBB:

Basso, Beattie, Bresnahan

BDNF:

Brain-derived neurotrophic factor

CD:

Cluster of differentiation

CNS:

Central nervous system

EAE:

Experimental autoimmune encephalomyelitis

FIZZ1:

Found in inflammatory zone 1

IFN:

Interferon

IL:

Interleukin

iNOS:

Inducible nitric oxide synthase

MAPC:

Multipotent adult progenitor cells

MMP-9:

Matrix metalloproteinase-9

NGF:

Nerve growth factor

NYU:

New York University

PPAR-gamma:

Peroxisome proliferator-activated receptor-gamma

SCI:

Spinal cord injury

TGF-beta:

Transforming growth factor-beta

TNF-alpha:

Tumor necrosis factor-alpha

TLR:

Toll-like receptor

Ym1:

Chitinase 3-like protein 3

References

  1. Kwon BK, Tetzlaff W, Grauer JN, Beiner J, Vaccaro AR (2004) Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J 4(4):451–464

    Article  PubMed  Google Scholar 

  2. Anderberg L, Aldskogius H, Holtz A (2007) Spinal cord injury—scientific challenges for the unknown future. Ups J Med Sci 112(3):259–288

    Article  PubMed  Google Scholar 

  3. Fehlings MG, Tator CH (1995) The relationships among the severity of spinal cord injury, residual neurological function, axon counts, and counts of retrogradely labeled neurons after experimental spinal cord injury. Exp Neurol 132(2):220–228

    Article  PubMed  CAS  Google Scholar 

  4. Bareyre FM, Kerschensteiner M, Raineteau O, Mettenleiter TC, Weinmann O et al (2004) The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci 7(3):269–277

    Article  PubMed  CAS  Google Scholar 

  5. Fleming JC, Norenberg MD, Ramsay DA, Dekaban GA, Marcillo AE et al (2006) The cellular inflammatory response in human spinal cords after injury. Brain 129(Pt 12):3249–3269

    Article  PubMed  Google Scholar 

  6. Bracken MB (2012) Steroids for acute spinal cord injury. Cochrane Database Syst Rev 1:CD001046

    PubMed  Google Scholar 

  7. Tsao YT, Chen WL, Tsai WC (2009) Steroids for acute spinal cord injury: revealing silent pathology. Lancet 374(9688):500

    Article  PubMed  Google Scholar 

  8. Bledsoe BE, Wesley AK, Salomone JP (2004) High-dose steroids for acute spinal cord injury in emergency medical services. Prehosp Emerg Care 8(3):313–316

    PubMed  Google Scholar 

  9. Baptiste DC, Fehlings MG (2007) Update on the treatment of spinal cord injury. Prog Brain Res 16:1217–1233

    Google Scholar 

  10. Baptiste DC, Fehlings MG (2008) Emerging drugs for spinal cord injury. Expert Opin Emerg Drugs 13(1):63–80

    Article  PubMed  CAS  Google Scholar 

  11. Cadotte DW, Fehlings MG (2011) Spinal cord injury: a systematic review of current treatment options. Clin Orthop Relat Res 469(3):732–741

    Article  PubMed  Google Scholar 

  12. Hawryluk GW, Rowland J, Kwon BK, Fehlings MG (2008) Protection and repair of the injured spinal cord: a review of completed, ongoing, and planned clinical trials for acute spinal cord injury. Neurosurg Focus 25(5):E14

    Article  PubMed  Google Scholar 

  13. Wright KT, El Masri W, Osman A, Chowdhury J, Johnson WE (2011) Concise review: bone marrow for the treatment of spinal cord injury: mechanisms and clinical applications. Stem Cells 29(2):169–178

    Article  PubMed  CAS  Google Scholar 

  14. Gruner JA (1992) A monitored contusion model of spinal cord injury in the rat. J Neurotrauma 9(2):123–126, discussion 126–128

    Article  PubMed  CAS  Google Scholar 

  15. Basso DM, Beattie MS, Bresnahan JC (1996) Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol 139(2):244–256

    Article  PubMed  CAS  Google Scholar 

  16. Yeo SJ, Hwang SN, Park SW, Kim YB, Min BK et al (2004) Development of a rat model of graded contusive spinal cord injury using a pneumatic impact device. J Korean Med Sci 19(4):574–580

    Article  PubMed  Google Scholar 

  17. Wong JK, Sharp K, Steward O (2009) A straight alley version of the BBB locomotor scale. Exp Neurol 217(2):417–420

    Article  PubMed  Google Scholar 

  18. von Euler M, Seiger A, Sundstrom E (1997) Clip compression injury in the spinal cord: a correlative study of neurological and morphological alterations. Exp Neurol 145(2 Pt 1):502–510

    Article  Google Scholar 

  19. Poon PC, Gupta D, Shoichet MS, Tator CH (2007) Clip compression model is useful for thoracic spinal cord injuries: histologic and functional correlates. Spine (Phila Pa 1976) 32(25):2853–2859

    Article  Google Scholar 

  20. Kim DH, Heo SD, Ahn MJ, Sim KB, Shin TK (2003) Activation of embryonic intermediate filaments contributes to glial scar formation after spinal cord injury in rats. J Vet Sci 4(2):109–112

    PubMed  Google Scholar 

  21. Joshi M, Fehlings MG (2002) Development and characterization of a novel, graded model of clip compressive spinal cord injury in the mouse: Part 2. Quantitative neuroanatomical assessment and analysis of the relationships between axonal tracts, residual tissue, and locomotor recovery. J Neurotrauma 19(2):191–203

    Article  PubMed  Google Scholar 

  22. Joshi M, Fehlings MG (2002) Development and characterization of a novel, graded model of clip compressive spinal cord injury in the mouse: Part 1. Clip design, behavioral outcomes, and histopathology. J Neurotrauma 19(2):175–190

    Article  PubMed  Google Scholar 

  23. Lee YS, Lin CY, Robertson RT, Hsiao I, Lin VW (2004) Motor recovery and anatomical evidence of axonal regrowth in spinal cord-repaired adult rats. J Neuropathol Exp Neurol 63(3):233–245

    PubMed  Google Scholar 

  24. Tillakaratne NJ, Guu JJ, de Leon RD, Bigbee AJ, London NJ et al (2010) Functional recovery of stepping in rats after a complete neonatal spinal cord transection is not due to regrowth across the lesion site. Neuroscience 166(1):23–33

    Article  PubMed  CAS  Google Scholar 

  25. Lee YS, Lin CY, Caiozzo VJ, Robertson RT, Yu J et al (2007) Repair of spinal cord transection and its effects on muscle mass and myosin heavy chain isoform phenotype. J Appl Physiol 103(5):1808–1814

    Article  PubMed  CAS  Google Scholar 

  26. Sala F, Menna G, Bricolo A, Young W (1999) Role of glycemia in acute spinal cord injury. Data from a rat experimental model and clinical experience. Ann N Y Acad Sci 890:133–154

    Article  PubMed  CAS  Google Scholar 

  27. Metz GA, Curt A, van de Meent H, Klusman I, Schwab ME et al (2000) Validation of the weight-drop contusion model in rats: a comparative study of human spinal cord injury. J Neurotrauma 17(1):1–17

    Article  PubMed  CAS  Google Scholar 

  28. Song MS, Seo HS, Yang M, Kim JS, Kim SH et al (2009) Activation of Ca2+/calmodulin-dependent protein kinase II alpha in the spinal cords of rats with clip compression injury. Brain Res 1271:114–120

    Article  PubMed  CAS  Google Scholar 

  29. Ahn M, Lee C, Jung K, Kim H, Moon C et al (2012) Immunohistochemical study of arginase-1 in the spinal cords of rats with clip compression injury. Brain Res 1445:11–19

    Article  PubMed  CAS  Google Scholar 

  30. Moon C, Lee TK, Kim H, Ahn M, Lee Y et al (2008) Immunohistochemical study of cathepsin D in the spinal cords of rats with clip compression injury. J Vet Med Sci 70(9):937–941

    Article  PubMed  CAS  Google Scholar 

  31. Shin T (2007) Increases in the phosphorylated form of caveolin-1 in the spinal cord of rats with clip compression injury. Brain Res 1141:228–234

    Article  PubMed  CAS  Google Scholar 

  32. Moon C, Heo S, Ahn M, Kim H, Shin M et al (2004) Immunohistochemical study of osteopontin in the spinal cords of rats with clip compression injury. J Vet Med Sci 66(10):1307–1310

    Article  PubMed  Google Scholar 

  33. Moon C, Heo S, Sim KB, Shin T (2004) Upregulation of CD44 expression in the spinal cords of rats with clip compression injury. Neurosci Lett 367(1):133–136

    Article  PubMed  CAS  Google Scholar 

  34. Jung K, Min DS, Sim KB, Ahn M, Kim H et al (2003) Upregulation of phospholipase D1 in the spinal cords of rats with clip compression injury. Neurosci Lett 336(2):126–130

    Article  PubMed  CAS  Google Scholar 

  35. Blight AR (1985) Delayed demyelination and macrophage invasion: a candidate for secondary cell damage in spinal cord injury. Cent Nerv Syst Trauma 2(4):299–315

    PubMed  CAS  Google Scholar 

  36. Karimi-Abdolrezaee S, Schut D, Wang J, Fehlings MG (2012) Chondroitinase and growth factors enhance activation and oligodendrocyte differentiation of endogenous neural precursor cells after spinal cord injury. PLoS One 7(5):e37589

    Article  PubMed  CAS  Google Scholar 

  37. Bellenchi GC, Volpicelli F, Piscopo V, Perrone-Capano C, di Porzio U (2012) Adult neural stem cells: an endogenous tool to repair brain injury? J Neurochem 124(2):159–167

    Article  PubMed  Google Scholar 

  38. Dougherty KD, Dreyfus CF, Black IB (2000) Brain-derived neurotrophic factor in astrocytes, oligodendrocytes, and microglia/macrophages after spinal cord injury. Neurobiol Dis 7(6 Pt B):574–585

    Article  PubMed  CAS  Google Scholar 

  39. Popovich PG, Guan Z, McGaughy V, Fisher L, Hickey WF et al (2002) The neuropathological and behavioral consequences of intraspinal microglial/macrophage activation. J Neuropathol Exp Neurol 61(7):623–633

    PubMed  CAS  Google Scholar 

  40. Cassetta L, Cassol E, Poli G (2011) Macrophage polarization in health and disease. Sci World J 11:2391–2402

    Article  CAS  Google Scholar 

  41. Guerrero AR, Uchida K, Nakajima H, Watanabe S, Nakamura M et al (2012) Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice. J Neuroinflammation 9:40

    Article  PubMed  CAS  Google Scholar 

  42. Beyer M, Mallmann MR, Xue J, Staratschek-Jox A, Vorholt D et al (2012) High-resolution transcriptome of human macrophages. PLoS One 7(9):e45466

    Article  PubMed  CAS  Google Scholar 

  43. Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ et al (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29(43):13435–13444

    Article  PubMed  CAS  Google Scholar 

  44. Kuo HS, Tsai MJ, Huang MC, Chiu CW, Tsai CY et al (2011) Acid fibroblast growth factor and peripheral nerve grafts regulate Th2 cytokine expression, macrophage activation, polyamine synthesis, and neurotrophin expression in transected rat spinal cords. J Neurosci 31(11):4137–4147

    Article  PubMed  CAS  Google Scholar 

  45. Menzies FM, Henriquez FL, Alexander J, Roberts CW (2010) Sequential expression of macrophage anti-microbial/inflammatory and wound healing markers following innate, alternative and classical activation. Clin Exp Immunol 160(3):369–379

    Article  PubMed  CAS  Google Scholar 

  46. Classen A, Lloberas J, Celada A (2009) Macrophage activation: classical versus alternative. Methods Mol Biol 531:29–43

    Article  PubMed  CAS  Google Scholar 

  47. Comalada M, Yeramian A, Modolell M, Lloberas J, Celada A (2012) Arginine and macrophage activation. Methods Mol Biol 844:223–235

    Article  PubMed  CAS  Google Scholar 

  48. Shechter R, Schwartz M (2013) Harnessing monocyte-derived macrophages to control central nervous system pathologies: no longer ‘if’ but ‘how’. J Pathol 229(2):332–346

    Google Scholar 

  49. Vereyken EJ, Heijnen PD, Baron W, de Vries EH, Dijkstra CD et al (2011) Classically and alternatively activated bone marrow derived macrophages differ in cytoskeletal functions and migration towards specific CNS cell types. J Neuroinflammation 8:58

    Article  PubMed  Google Scholar 

  50. Varnum MM, Ikezu T (2012) The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer’s disease brain. Arch Immunol Ther Exp (Warsz) 60(4):251–266

    Article  CAS  Google Scholar 

  51. Andrade MR, Amaral EP, Ribeiro SC, Almeida FM, Peres TV et al (2012) Pathogenic Mycobacterium bovis strains differ in their ability to modulate the proinflammatory activation phenotype of macrophages. BMC Microbiol 12(1):166

    Article  PubMed  CAS  Google Scholar 

  52. Komori T, Morikawa Y, Inada T, Hisaoka T, Senba E (2011) Site-specific subtypes of macrophages recruited after peripheral nerve injury. NeuroReport 22(17):911–917

    Article  PubMed  Google Scholar 

  53. Ahn M, Yang W, Kim H, Jin JK, Moon C et al (2012) Immunohistochemical study of arginase-1 in the spinal cords of Lewis rats with experimental autoimmune encephalomyelitis. Brain Res 1453:77–86

    Article  PubMed  CAS  Google Scholar 

  54. Ponomarev ED, Maresz K, Tan Y, Dittel BN (2007) CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. J Neurosci 27(40):10714–10721

    Article  PubMed  CAS  Google Scholar 

  55. Nakajima H, Uchida K, Guerrero AR, Watanabe S, Sugita D et al (2012) Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury. J Neurotrauma 29(8):1614–1625

    Article  PubMed  Google Scholar 

  56. Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483

    Article  PubMed  CAS  Google Scholar 

  57. Laoui D, Movahedi K, Van Overmeire E, Van den Bossche J, Schouppe E et al (2011) Tumor-associated macrophages in breast cancer: distinct subsets, distinct functions. Int J Dev Biol 55(7–9):861–867

    Article  PubMed  Google Scholar 

  58. Weber MS, Prod’homme T, Youssef S, Dunn SE, Rundle CD et al (2007) Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nat Med 13(8):935–943

    Article  PubMed  CAS  Google Scholar 

  59. Oh J, Riek AE, Weng S, Petty M, Kim D et al (2012) Endoplasmic reticulum stress controls M2 macrophage differentiation and foam cell formation. J Biol Chem 287(15):11629–11641

    Article  PubMed  CAS  Google Scholar 

  60. Bouhlel MA, Derudas B, Rigamonti E, Dievart R, Brozek J et al (2007) PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab 6(2):137–143

    Article  PubMed  CAS  Google Scholar 

  61. Gratchev A, Kzhyshkowska J, Kannookadan S, Ochsenreiter M, Popova A et al (2008) Activation of a TGF-beta-specific multistep gene expression program in mature macrophages requires glucocorticoid-mediated surface expression of TGF-beta receptor II. J Immunol 180(10):6553–6565

    PubMed  CAS  Google Scholar 

  62. Weisser SB, McLarren KW, Kuroda E, Sly LM (2013) Generation and characterization of murine alternatively activated macrophages. Methods Mol Biol 946:225–239

    Article  PubMed  CAS  Google Scholar 

  63. Imagama T, Ogino K, Takemoto K, Kato Y, Kataoka H et al (2012) Regulation of nitric oxide generation by up-regulated arginase I in rat spinal cord injury. J Clin Biochem Nutr 51(1):68–75

    Article  PubMed  CAS  Google Scholar 

  64. Mikita J, Dubourdieu-Cassagno N, Deloire MS, Vekris A, Biran M et al (2011) Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration. Mult Scler 17(1):2–15

    Article  PubMed  CAS  Google Scholar 

  65. Jiang MH, Chung E, Chi GF, Ahn W, Lim JE et al (2012) Substance P induces M2-type macrophages after spinal cord injury. NeuroReport 23(13):786–792

    Article  PubMed  CAS  Google Scholar 

  66. Gomes-Leal W (2012) Microglial physiopathology: how to explain the dual role of microglia after acute neural disorders? Brain Behav 2(3):345–356

    Article  PubMed  Google Scholar 

  67. Shechter R, London A, Varol C, Raposo C, Cusimano M et al (2009) Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 6(7):e1000113

    Article  PubMed  Google Scholar 

  68. Ishii H, Jin X, Ueno M, Tanabe S, Kubo T et al (2012) Adoptive transfer of Th1-conditioned lymphocytes promotes axonal remodeling and functional recovery after spinal cord injury. Cell Death Dis 3:e363

    Article  PubMed  CAS  Google Scholar 

  69. Rapalino O, Lazarov-Spiegler O, Agranov E, Velan GJ, Yoles E et al (1998) Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med 4(7):814–821

    Article  PubMed  CAS  Google Scholar 

  70. Schwartz M, Lazarov-Spiegler O, Rapalino O, Agranov I, Velan G et al (1999) Potential repair of rat spinal cord injuries using stimulated homologous macrophages. Neurosurgery 44(5):1041–1045, discussion 1045–1046

    Article  PubMed  CAS  Google Scholar 

  71. Mori M, Gotoh T (2000) Regulation of nitric oxide production by arginine metabolic enzymes. Biochem Biophys Res Commun 275(3):715–719

    Article  PubMed  CAS  Google Scholar 

  72. Kim BG, Hwang DH, Lee SI, Kim EJ, Kim SU (2007) Stem cell-based cell therapy for spinal cord injury. Cell Transplant 16(4):355–364

    PubMed  Google Scholar 

  73. Noble M, Davies JE, Mayer-Proschel M, Proschel C, Davies SJ (2011) Precursor cell biology and the development of astrocyte transplantation therapies: lessons from spinal cord injury. Neurotherapeutics 8(4):677–693

    Article  PubMed  Google Scholar 

  74. Vaquero J, Zurita M (2009) Bone marrow stromal cells for spinal cord repair: a challenge for contemporary neurobiology. Histol Histopathol 24(1):107–116

    PubMed  CAS  Google Scholar 

  75. Radtke C, Sasaki M, Lankford KL, Vogt PM, Kocsis JD (2008) Potential of olfactory ensheathing cells for cell-based therapy in spinal cord injury. J Rehabil Res Dev 45(1):141–151

    Article  PubMed  Google Scholar 

  76. Bottai D, Cigognini D, Madaschi L, Adami R, Nicora E et al (2010) Embryonic stem cells promote motor recovery and affect inflammatory cell infiltration in spinal cord injured mice. Exp Neurol 223(2):452–463

    Article  PubMed  CAS  Google Scholar 

  77. Barminko J, Kim JH, Otsuka S, Gray A, Schloss R et al (2011) Encapsulated mesenchymal stromal cells for in vivo transplantation. Biotechnol Bioeng 108(11):2747–2758

    Article  PubMed  CAS  Google Scholar 

  78. Cusimano M, Biziato D, Brambilla E, Donega M, Alfaro-Cervello C et al (2012) Transplanted neural stem/precursor cells instruct phagocytes and reduce secondary tissue damage in the injured spinal cord. Brain 135(Pt 2):447–460

    Article  PubMed  Google Scholar 

  79. Busch SA, Hamilton JA, Horn KP, Cuascut FX, Cutrone R et al (2011) Multipotent adult progenitor cells prevent macrophage-mediated axonal dieback and promote regrowth after spinal cord injury. J Neurosci 31(3):944–953

    Article  PubMed  CAS  Google Scholar 

  80. Walker PA, Bedi S, Shah SK, Jimenez F, Xue H et al (2012) Intravenous multipotent adult progenitor cell therapy after traumatic brain injury: modulation of the resident microglia population. J Neuroinflammation 9(1):228

    Article  PubMed  CAS  Google Scholar 

  81. Bedi SS, Walker P, Shah S, Jimenez F, Thomas C et al (2012) 104 multipotent adult progenitor cell therapy for traumatic brain injury: systemic modulation of microglia. Neurosurgery 71(2):E544

    Article  Google Scholar 

  82. Salazar DL, Uchida N, Hamers FP, Cummings BJ, Anderson AJ (2010) Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD-scid mouse model. PLoS One 5(8):e12272

    Article  PubMed  Google Scholar 

  83. Park SI, Lim JY, Jeong CH, Kim SM, Jun JA et al (2012) Human umbilical cord blood-derived mesenchymal stem cell therapy promotes functional recovery of contused rat spinal cord through enhancement of endogenous cell proliferation and oligogenesis. J Biomed Biotechnol 2012:362473. doi:10.1155/2012/362473

    PubMed  Google Scholar 

  84. Sakai K, Yamamoto A, Matsubara K, Nakamura S, Naruse M et al (2012) Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest 122(1):80–90

    PubMed  CAS  Google Scholar 

  85. Cao Q, Benton RL, Whittemore SR (2002) Stem cell repair of central nervous system injury. J Neurosci Res 68(5):501–510

    Article  PubMed  CAS  Google Scholar 

  86. Kim H, Walczak P, Muja N, Campanelli JT, Bulte JW (2012) ICV-transplanted human glial precursor cells are short-lived yet exert immunomodulatory effects in mice with EAE. Glia 60(7):1117–1129

    Article  PubMed  Google Scholar 

  87. Muja N, Cohen ME, Zhang J, Kim H, Gilad AA et al (2011) Neural precursors exhibit distinctly different patterns of cell migration upon transplantation during either the acute or chronic phase of EAE: a serial MR imaging study. Magn Reson Med 65(6):1738–1749

    Article  PubMed  Google Scholar 

  88. Ben-Hur T (2008) Immunomodulation by neural stem cells. J Neurol Sci 265(1–2):102–104

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work within the field of spinal cord injury has grown experimentally over the last several decades. We have particularly focused on the review of phenotypes of macrophages in the pathogenesis of clip compression-induced spinal cord injury in rat models. We apologize in advance to all researchers whose work we could not discuss due to space constraints.

Conflicts of Interest

The authors declare that they have no conflicts of interest, personally, professionally, or financially, relating to the publication of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taekyun Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, T., Ahn, M., Moon, C. et al. Alternatively Activated Macrophages in Spinal Cord Injury and Remission: Another Mechanism for Repair?. Mol Neurobiol 47, 1011–1019 (2013). https://doi.org/10.1007/s12035-013-8398-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8398-6

Keywords

Navigation