Skip to main content

Advertisement

Log in

Direct GSK-3β Inhibition Enhances Mesenchymal Stromal Cell Migration by Increasing Expression of Beta-PIX and CXCR4

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Mesenchymal stromal cells (MSCs) are emerging as candidate cells for the treatment of neurological diseases because of their neural replacement, neuroprotective, and neurotrophic effects. However, the majority of MSCs transplanted by various routes fail to reach the site of injury, and they have demonstrated only minimal therapeutic benefit in clinical trials. Therefore, enhancing the migration of MSCs to target sites is essential for this therapeutic strategy to be effective. In this study, we assessed whether inhibition of glycogen synthase kinase-3β (GSK-3β) increases the migration capacity of MSCs during ex vivo expansion. Human bone marrow MSCs (hBM-MSCs) were cultured with various GSK-3β inhibitors (LiCl, SB-415286, and AR-A014418). Using a migration assay kit, we found that the motility of hBM-MSCs was significantly enhanced by GSK-3β inhibition. Western blot analysis revealed increased levels of migration-related signaling proteins such as phospho-GSK-3β, β-catenin, phospho-c-Raf, phospho-extracellular signal-regulated kinase (ERK), phospho-β-PAK-interacting exchange factor (PIX), and CXC chemokine receptor 4 (CXCR4). In addition, real-time polymerase chain reaction demonstrated increased expression of matrix metalloproteinase-2 (MMP-2), membrane-type MMP-1 (MT1-MMP), and β-PIX. In the reverse approach, treatment with β-PIX shRNA or CXCR4 inhibitor (AMD 3100) reduced hBM-MSC migration. These findings suggest that inhibition of GSK-3β during ex vivo expansion of hBM-MSCs may enhance their migration capacity by increasing expression of β-catenin, phospho-c-Raf, phospho-ERK, and β-PIX and the subsequent up-regulation of CXCR4. Enhancing the migration capacity of hBM-MSCs by treating these cells with GSK-3β inhibitors may increase their therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. da Silva Meirelles L, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213

    Article  PubMed  Google Scholar 

  2. Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19:180–192

    Article  PubMed  CAS  Google Scholar 

  3. Maltman DJ, Hardy SA, Przyborski SA (2011) Role of mesenchymal stem cells in neurogenesis and nervous system repair. Neurochem Int 59:347–356

    PubMed  CAS  Google Scholar 

  4. Lindvall O, Kokaia Z (2010) Stem cells in human neurodegenerative disorders—time for clinical translation? J Clin Invest 120:29–40

    Article  PubMed  CAS  Google Scholar 

  5. Trounson A, Thakar RG, Lomax G, Gibbons D (2011) Clinical trials for stem cell therapies. BMC Med 9:52

    Article  PubMed  Google Scholar 

  6. Tsai LK, Wang Z, Munasinghe J, Leng Y, Leeds P, Chuang DM (2011) Mesenchymal stem cells primed with valproate and lithium robustly migrate to infarcted regions and facilitate recovery in a stroke model. Stroke 42:2932–2939

    Article  PubMed  Google Scholar 

  7. Tsai LK, Leng Y, Wang Z, Leeds P, Chuang DM (2010) The mood stabilizers valproic acid and lithium enhance mesenchymal stem cell migration via distinct mechanisms. Neuropsychopharmacology 35:2225–2237

    Article  PubMed  CAS  Google Scholar 

  8. Son BR, Marquez-Curtis LA, Kucia M, Wysoczynski M, Turner AR, Ratajczak J, Ratajczak MZ, Janowska-Wieczorek A (2006) Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1–CXCR4 and hepatocyte growth factor–c-met axes and involves matrix metalloproteinases. Stem Cells 24:1254–1264

    Article  PubMed  CAS  Google Scholar 

  9. Ryu CH, Park SA, Kim SM, Lim JY, Jeong CH, Jun JA, Oh JH, Park SH, Oh WI, Jeun SS (2010) Migration of human umbilical cord blood mesenchymal stem cells mediated by stromal cell-derived factor-1/CXCR4 axis via Akt, ERK, and p38 signal transduction pathways. Biochem Biophys Res Commun 398:105–110

    Article  PubMed  CAS  Google Scholar 

  10. Li L, Xia Y, Wang Z, Cao X, Da Z, Guo G, Qian J, Liu X, Fan Y, Sun L, Sang A, Gu Z (2011) Suppression of the PI3K–Akt pathway is involved in the decreased adhesion and migration of bone marrow-derived mesenchymal stem cells from non-obese diabetic mice. Cell Biol Int 35:961–966

    Article  PubMed  CAS  Google Scholar 

  11. Lee J, Jung ID, Chang WK, Park CG, Cho DY, Shin EY, Seo DW, Kim YK, Lee HW, Han JW, Lee HY (2005) p85 beta-PIX is required for cell motility through phosphorylations of focal adhesion kinase and p38 MAP kinase. Exp Cell Res 307:315–328

    Article  PubMed  CAS  Google Scholar 

  12. Koh SH, Noh MY, Cho GW, Kim KS, Kim SH (2009) Erythropoietin increases the motility of human bone marrow-multipotent stromal cells (hBM-MSCs) and enhances the production of neurotrophic factors from hBM-MSCs. Stem Cells Dev 18:411–421

    Article  PubMed  CAS  Google Scholar 

  13. Koh SH, Huh YM, Noh MY, Kim HY, Kim KS, Lee ES, Ko HJ, Cho GW, Yoo AR, Song HT, Hwang S, Lee K, Haam S, Frank JA, Suh JS, Kim SH (2012) beta-PIX is critical for transplanted mesenchymal stromal cell migration. Stem Cells Dev 21:1989–1999

    Article  PubMed  CAS  Google Scholar 

  14. Neth P, Ciccarella M, Egea V, Hoelters J, Jochum M, Ries C (2006) Wnt signaling regulates the invasion capacity of human mesenchymal stem cells. Stem Cells 24:1892–1903

    Article  PubMed  CAS  Google Scholar 

  15. Kockeritz L, Doble B, Patel S, Woodgett JR (2006) Glycogen synthase kinase-3—an overview of an over-achieving protein kinase. Curr Drug Targets 7:1377–1388

    Article  PubMed  CAS  Google Scholar 

  16. Kim MH, Lee YJ, Kim MO, Kim JS, Han HJ (2010) Effect of leukotriene D4 on mouse embryonic stem cell migration and proliferation: involvement of PI3K/Akt as well as GSK-3beta/beta-catenin signaling pathways. J Cell Biochem 111:686–698

    Article  PubMed  CAS  Google Scholar 

  17. Shin EY, Shin KS, Lee CS, Woo KN, Quan SH, Soung NK, Kim YG, Cha CI, Kim SR, Park D, Bokoch GM, Kim EG (2002) Phosphorylation of p85 beta PIX, a Rac/Cdc42-specific guanine nucleotide exchange factor, via the Ras/ERK/PAK2 pathway is required for basic fibroblast growth factor-induced neurite outgrowth. J Biol Chem 277:44417–44430

    Article  PubMed  CAS  Google Scholar 

  18. Jung GA, Yoon JY, Moon BS, Yang DH, Kim HY, Lee SH, Bryja V, Arenas E, Choi KY (2008) Valproic acid induces differentiation and inhibition of proliferation in neural progenitor cells via the beta-catenin–Ras–ERK–p21Cip/WAF1 pathway. BMC Cell Biol 9:66

    Article  PubMed  Google Scholar 

  19. Martin M, Rehani K, Jope RS, Michalek SM (2005) Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol 6:777–784

    Article  PubMed  CAS  Google Scholar 

  20. Hua F, Zhou J, Liu J, Zhu C, Cui B, Lin H, Liu Y, Jin W, Yang H, Hu Z (2010) Glycogen synthase kinase-3beta negatively regulates TGF-beta1 and angiotensin II-mediated cellular activity through interaction with Smad3. Eur J Pharmacol 644:17–23

    Article  PubMed  CAS  Google Scholar 

  21. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  PubMed  CAS  Google Scholar 

  22. Aslan H, Zilberman Y, Kandel L, Liebergall M, Oskouian RJ, Gazit D, Gazit Z (2006) Osteogenic differentiation of noncultured immunoisolated bone marrow-derived CD105+ cells. Stem Cells 24:1728–1737

    Article  PubMed  Google Scholar 

  23. Zhu H, Mitsuhashi N, Klein A, Barsky LW, Weinberg K, Barr ML, Demetriou A, Wu GD (2006) The role of the hyaluronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix. Stem Cells 24:928–935

    Article  PubMed  CAS  Google Scholar 

  24. Koh SH, Noh MY, Kim SH (2008) Amyloid-beta-induced neurotoxicity is reduced by inhibition of glycogen synthase kinase-3. Brain Res 1188:254–262

    Article  PubMed  CAS  Google Scholar 

  25. Wisel S, Khan M, Kuppusamy ML, Mohan IK, Chacko SM, Rivera BK, Sun BC, Hideg K, Kuppusamy P (2009) Pharmacological preconditioning of mesenchymal stem cells with trimetazidine (1-[2,3,4-trimethoxybenzyl]piperazine) protects hypoxic cells against oxidative stress and enhances recovery of myocardial function in infarcted heart through Bcl-2 expression. J Pharmacol Exp Ther 329:543–550

    Article  PubMed  CAS  Google Scholar 

  26. Oh JS, Ha Y, An SS, Khan M, Pennant WA, Kim HJ, do Yoon H, Lee M, Kim KN (2010) Hypoxia-preconditioned adipose tissue-derived mesenchymal stem cell increase the survival and gene expression of engineered neural stem cells in a spinal cord injury model. Neurosci Lett 472:215–219

    Article  PubMed  CAS  Google Scholar 

  27. Khan M, Akhtar S, Mohsin S, Khan N, Riazuddin S (2011) Growth factor preconditioning increases the function of diabetes-impaired mesenchymal stem cells. Stem Cells Dev 20:67–75

    Article  PubMed  CAS  Google Scholar 

  28. Rosova I, Dao M, Capoccia B, Link D, Nolta JA (2008) Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells 26:2173–2182

    Article  PubMed  CAS  Google Scholar 

  29. Hu X, Wei L, Taylor TM, Wei J, Zhou X, Wang JA, Yu SP (2011) Hypoxic preconditioning enhances bone marrow mesenchymal stem cell migration via Kv2.1 channel and FAK activation. Am J Physiol Cell Physiol 301(2):C362–C372

    Article  PubMed  CAS  Google Scholar 

  30. Hoefen RJ, Berk BC (2006) The multifunctional GIT family of proteins. J Cell Sci 119:1469–1475

    Article  PubMed  CAS  Google Scholar 

  31. Botrugno OA, Paris S, Za L, Gualdoni S, Cattaneo A, Bachi A, de Curtis I (2006) Characterization of the endogenous GIT1–betaPIX complex, and identification of its association to membranes. Eur J Cell Biol 85:35–46

    Article  PubMed  CAS  Google Scholar 

  32. ten Klooster JP, Jaffer ZM, Chernoff J, Hordijk PL (2006) Targeting and activation of Rac1 are mediated by the exchange factor beta-Pix. J Cell Biol 172:759–769

    Article  PubMed  Google Scholar 

  33. Yoshii S, Tanaka M, Otsuki Y, Wang DY, Guo RJ, Zhu Y, Takeda R, Hanai H, Kaneko E, Sugimura H (1999) alphaPIX nucleotide exchange factor is activated by interaction with phosphatidylinositol 3-kinase. Oncogene 18:5680–5690

    Article  PubMed  CAS  Google Scholar 

  34. Park HS, Lee SH, Park D, Lee JS, Ryu SH, Lee WJ, Rhee SG, Bae YS (2004) Sequential activation of phosphatidylinositol 3-kinase, beta Pix, Rac1, and Nox1 in growth factor-induced production of H2O2. Mol Cell Biol 24:4384–4394

    Article  PubMed  CAS  Google Scholar 

  35. Chan PM, Lim L, Manser E (2008) PAK is regulated by PI3K, PIX, CDC42, and PP2Calpha and mediates focal adhesion turnover in the hyperosmotic stress-induced p38 pathway. J Biol Chem 283:24949–24961

    Article  PubMed  CAS  Google Scholar 

  36. Jeon SH, Yoon JY, Park YN, Jeong WJ, Kim S, Jho EH, Surh YJ, Choi KY (2007) Axin inhibits extracellular signal-regulated kinase pathway by Ras degradation via beta-catenin. J Biol Chem 282:14482–14492

    Article  PubMed  CAS  Google Scholar 

  37. Raz E, Mahabaleshwar H (2009) Chemokine signaling in embryonic cell migration: a fisheye view. Development 136:1223–1229

    Article  PubMed  CAS  Google Scholar 

  38. Wang Y, Deng Y, Zhou GQ (2008) SDF-1alpha/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model. Brain Res 1195:104–112

    Article  PubMed  CAS  Google Scholar 

  39. Hung SC, Pochampally RR, Hsu SC, Sanchez C, Chen SC, Spees J, Prockop DJ (2007) Short-term exposure of multipotent stromal cells to low oxygen increases their expression of CX3CR1 and CXCR4 and their engraftment in vivo. PLoS One 2:e416

    Article  PubMed  Google Scholar 

  40. Holmes T, O'Brien TA, Knight R, Lindeman R, Shen S, Song E, Symonds G, Dolnikov A (2008) Glycogen synthase kinase-3beta inhibition preserves hematopoietic stem cell activity and inhibits leukemic cell growth. Stem Cells 26:1288–1297

    Article  PubMed  CAS  Google Scholar 

  41. Cheng Z, Ou L, Zhou X, Li F, Jia X, Zhang Y, Liu X, Li Y, Ward CA, Melo LG, Kong D (2008) Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol Ther 16:571–579

    Article  PubMed  CAS  Google Scholar 

  42. Lapidot T, Dar A, Kollet O (2005) How do stem cells find their way home? Blood 106:1901–1910

    Article  PubMed  CAS  Google Scholar 

  43. Lange C, Mix E, Frahm J, Glass A, Muller J, Schmitt O, Schmole AC, Klemm K, Ortinau S, Hubner R, Frech MJ, Wree A, Rolfs A (2011) Small molecule GSK-3 inhibitors increase neurogenesis of human neural progenitor cells. Neurosci Lett 488:36–40

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Korea Healthcare Technology R&D Project, Ministry for Health & Welfare Affairs, Republic of Korea (A101712). The funding organization had no role in the design, conduct, analysis, or preparation of this report.

Conflict of interest

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Ho Koh.

Additional information

Young Seo Kim and Min Young Noh contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(JPEG 128 kb)

High resolution image (TIFF 12287 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y.S., Noh, M.Y., Kim, J.Y. et al. Direct GSK-3β Inhibition Enhances Mesenchymal Stromal Cell Migration by Increasing Expression of Beta-PIX and CXCR4. Mol Neurobiol 47, 811–820 (2013). https://doi.org/10.1007/s12035-012-8393-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8393-3

Keywords

Navigation