Skip to main content

Advertisement

Log in

Making the Brain Glow: In Vivo Bioluminescence Imaging to Study Neurodegeneration

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Bioluminescence imaging (BLI) takes advantage of the light-emitting properties of luciferase enzymes, which produce light upon oxidizing a substrate (i.e., d-luciferin) in the presence of molecular oxygen and energy. Photons emitted from living tissues can be detected and quantified by a highly sensitive charge-coupled device camera, enabling the investigator to noninvasively analyze the dynamics of biomolecular reactions in a variety of living model organisms such as transgenic mice. BLI has been used extensively in cancer research, cell transplantation, and for monitoring of infectious diseases, but only recently experimental models have been designed to study processes and pathways in neurological disorders such as Alzheimer disease, Parkinson disease, or amyotrophic lateral sclerosis. In this review, we highlight recent applications of BLI in neuroscience, including transgene expression in the brain, longitudinal studies of neuroinflammatory responses to neurodegeneration and injury, and in vivo imaging studies of neurogenesis and mitochondrial toxicity. Finally, we highlight some new developments of BLI compounds and luciferase substrates with promising potential for in vivo studies of neurological dysfunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AD:

Alzheimer disease

ALS:

Amyotrophic lateral sclerosis

Aβ:

Amyloid beta

AP:

Apyrimidinic

ATP:

Adenosine-5′-triphosphate

BBB:

Blood–brain barrier

BLI:

Bioluminescence imaging

BRET:

Bioluminescence resonance energy transfer

CaMKIIα:

Calcium/calmodulin-dependent protein kinase II alpha

CCD:

Charged-coupled device camera

CNS:

Central nervous system

Cluc:

C-terminal half of luc

CT:

Computed tomography

DHE:

Dihydroethidium

DCX:

Doublecortin

dox:

Doxycycline

EAE:

Experimental autoimmune encephalomyelitis

EGFR:

Epidermal growth factor receptor

FRET:

Fluorescence resonance energy transfer

FTLD:

Frontotemporal lobar degeneration

GAP-43:

Growth-associated protein 43

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

GFP:

Green fluorescent protein

GFAP:

Glial fibrillary acidic protein

HIF-1:

Hypoxia-inducible transcriptional factor 1

hTau40 (2N4R):

The longest human Tau isoform

hTau40/ΔK280:

Pro-aggregant variant of human Tau

hTau40/ΔK280/PP:

Anti-aggregant variant of human Tau

KA:

Kainic acid

LPS:

Lipopolysaccharide

luc:

Luciferase

MCAO:

Middle cerebral artery occlusion

mtDNA:

Mitochondrial DNA

MRI:

Magnetic resonance imaging

mutUNG1:

Mutated mitochondrial DNA repair enzyme

NFTs:

Neurofibrillary tangles

NMDA:

N-methyl-d-aspartic acid

NSC:

Neuronal stem cells

Nluc:

N-terminal half of luc

NF-κB:

Nuclear factor kappa B

OB:

Olfactory bulb

PD:

Parkinson disease

PET:

Positron emission tomography

p/s:

Photons per second

QDs:

Quantum dots

Rluc:

Renilla luciferase

ROS:

Reactive oxygen species

SBE:

Smad binding elements

SPECT:

Single-photon emission computed tomography

SVZ:

Subventricular zone

TauRD :

Repeat domain of human Tau

TDP-43:

Transactive response DNA-binding protein 43

TGF-β:

Transforming growth factor beta

TLR2:

Toll-like receptor II

tTA:

Transactivator

US:

Ultrasound

WT:

Wild type

References

  1. Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17(5):545–580. doi:10.1101/gad.1047403

    PubMed  CAS  Google Scholar 

  2. Ewers M, Frisoni GB, Teipel SJ, Grinberg LT, Amaro E Jr, Heinsen H, Thompson PM, Hampel H (2011) Staging Alzheimer’s disease progression with multimodality neuroimaging. Prog Neurobiol 95(4):535–546. doi:10.1016/j.pneurobio.2011.06.004

    PubMed  Google Scholar 

  3. Herholz K, Ebmeier K (2011) Clinical amyloid imaging in Alzheimer’s disease. Lancet Neurol 10(7):667–670. doi:10.1016/S1474-4422(11)70123-5

    PubMed  CAS  Google Scholar 

  4. Ono M, Saji H (2012) Molecular approaches to the treatment, prophylaxis, and diagnosis of Alzheimer’s disease: novel PET/SPECT imaging probes for diagnosis of Alzheimer’s disease. J Pharmacol Sci 118(3):338–344

    PubMed  CAS  Google Scholar 

  5. Troy T, Jekic-McMullen D, Sambucetti L, Rice B (2004) Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol Imaging 3(1):9–23. doi:10.1162/153535004773861688

    PubMed  CAS  Google Scholar 

  6. Contag CH (2007) In vivo pathology: seeing with molecular specificity and cellular resolution in the living body. Annu Rev Pathol 2:277–305. doi:10.1146/annurev.pathol.2.010506.091930

    PubMed  CAS  Google Scholar 

  7. Keyaerts M, Remory I, Caveliers V, Breckpot K, Bos TJ, Poelaert J, Bossuyt A, Lahoutte T (2012) Inhibition of firefly luciferase by general anesthetics: effect on in vitro and in vivo bioluminescence imaging. PLoS One 7(1):e30061. doi:10.1371/journal.pone.0030061

    PubMed  CAS  Google Scholar 

  8. Luker KE, Luker GD (2008) Applications of bioluminescence imaging to antiviral research and therapy: multiple luciferase enzymes and quantitation. Antivir Res 78(3):179–187. doi:10.1016/j.antiviral.2008.01.158

    PubMed  CAS  Google Scholar 

  9. Prescher JA, Contag CH (2010) Guided by the light: visualizing biomolecular processes in living animals with bioluminescence. Curr Opin Chem Biol 14(1):80–89. doi:10.1016/j.cbpa.2009.11.001

    PubMed  CAS  Google Scholar 

  10. Virostko J, Jansen ED (2009) Validation of bioluminescent imaging techniques. Methods Mol Biol 574:15–23. doi:10.1007/978-1-60327-321-3_2

    PubMed  CAS  Google Scholar 

  11. Day JC, Tisi LC, Bailey MJ (2004) Evolution of beetle bioluminescence: the origin of beetle luciferin. Luminescence 19(1):8–20. doi:10.1002/bio.749

    PubMed  CAS  Google Scholar 

  12. Widder EA (2010) Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. Science 328(5979):704–708. doi:10.1126/science.1174269

    PubMed  CAS  Google Scholar 

  13. Contag CH, Spilman SD, Contag PR, Oshiro M, Eames B, Dennery P, Stevenson DK, Benaron DA (1997) Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem Photobiol 66(4):523–531

    PubMed  CAS  Google Scholar 

  14. Marques SM, Esteves da Silva JC (2009) Firefly bioluminescence: a mechanistic approach of luciferase catalyzed reactions. IUBMB Life 61(1):6–17. doi:10.1002/iub.134

    PubMed  CAS  Google Scholar 

  15. Tromberg BJ, Shah N, Lanning R, Cerussi A, Espinoza J, Pham T, Svaasand L, Butler J (2000) Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy. Neoplasia 2(1–2):26–40

    PubMed  CAS  Google Scholar 

  16. Zhao H, Doyle TC, Coquoz O, Kalish F, Rice BW, Contag CH (2005) Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo. J Biomed Opt 10(4):41210. doi:10.1117/1.2032388

    PubMed  Google Scholar 

  17. Lalancette-Hebert M, Phaneuf D, Soucy G, Weng YC, Kriz J (2009) Live imaging of Toll-like receptor 2 response in cerebral ischaemia reveals a role of olfactory bulb microglia as modulators of inflammation. Brain: J Neurol 132(Pt 4):940–954. doi:10.1093/brain/awn345

    CAS  Google Scholar 

  18. Virostko J, Chen Z, Fowler M, Poffenberger G, Powers AC, Jansen ED (2004) Factors influencing quantification of in vivo bioluminescence imaging: application to assessment of pancreatic islet transplants. Mol Imaging 3(4):333–342. doi:10.1162/1535350042973508

    PubMed  Google Scholar 

  19. Allard M, Cote D, Davidson L, Dazai J, Henkelman RM (2007) Combined magnetic resonance and bioluminescence imaging of live mice. J Biomed Opt 12(3):034018. doi:10.1117/1.2745298

    PubMed  Google Scholar 

  20. Klose AD, Beattie BJ, Dehghani H, Vider L, Le C, Ponomarev V, Blasberg R (2010) In vivo bioluminescence tomography with a blocking-off finite-difference SP3 method and MRI/CT coregistration. Med Phys 37(1):329–338

    PubMed  Google Scholar 

  21. Razansky D, Deliolanis NC, Vinegoni C, Ntziachristos V (2012) Deep tissue optical and optoacoustic molecular imaging technologies for pre-clinical research and drug discovery. Curr Pharm Biotechnol 13(4):504–522

    PubMed  CAS  Google Scholar 

  22. Kuo C, Coquoz O, Troy TL, Xu H, Rice BW (2007) Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging. J Biomed Opt 12(2):024007. doi:10.1117/1.2717898

    PubMed  Google Scholar 

  23. Sydow A, Van der Jeugd A, Zheng F, Ahmed T, Balschun D, Petrova O, Drexler D, Zhou L, Rune G, Mandelkow E, D'Hooge R, Alzheimer C, Mandelkow EM (2011) Tau-induced defects in synaptic plasticity, learning, and memory are reversible in transgenic mice after switching off the toxic Tau mutant. J Neurosci 31(7):2511–2525. doi:10.1523/JNEUROSCI.5245-10.2011

    PubMed  CAS  Google Scholar 

  24. Berger F, Paulmurugan R, Bhaumik S, Gambhir SS (2008) Uptake kinetics and biodistribution of 14C-D-luciferin—a radiolabeled substrate for the firefly luciferase catalyzed bioluminescence reaction: impact on bioluminescence based reporter gene imaging. Eur J Nucl Med Mol Imaging 35(12):2275–2285. doi:10.1007/s00259-008-0870-6

    PubMed  Google Scholar 

  25. Lee KH, Byun SS, Paik JY, Lee SY, Song SH, Choe YS, Kim BT (2003) Cell uptake and tissue distribution of radioiodine labelled D-luciferin: implications for luciferase based gene imaging. Nucl Med Commun 24(9):1003–1009. doi:10.1097/01.mnm.0000090431.24184.49

    PubMed  CAS  Google Scholar 

  26. Paroo Z, Bollinger RA, Braasch DA, Richer E, Corey DR, Antich PP, Mason RP (2004) Validating bioluminescence imaging as a high-throughput, quantitative modality for assessing tumor burden. Mol Imaging 3(2):117–124. doi:10.1162/1535350041464865

    PubMed  Google Scholar 

  27. Selkoe DJ (1991) The molecular pathology of Alzheimer’s disease. Neuron 6(4):487–498

    PubMed  CAS  Google Scholar 

  28. Denk F, Wade-Martins R (2009) Knock-out and transgenic mouse models of tauopathies. Neurobiol Aging 30(1):1–13. doi:10.1016/j.neurobiolaging.2007.05.010

    PubMed  CAS  Google Scholar 

  29. Lee VM, Kenyon TK, Trojanowski JQ (2005) Transgenic animal models of tauopathies. Biochim Biophys Acta 1739(2–3):251–259. doi:10.1016/j.bbadis.2004.06.014

    PubMed  CAS  Google Scholar 

  30. Eckermann K, Mocanu MM, Khlistunova I, Biernat J, Nissen A, Hofmann A, Schonig K, Bujard H, Haemisch A, Mandelkow E, Zhou L, Rune G, Mandelkow EM (2007) The beta-propensity of Tau determines aggregation and synaptic loss in inducible mouse models of tauopathy. J Biol Chem 282(43):31755–31765. doi:10.1074/jbc.M705282200

    PubMed  CAS  Google Scholar 

  31. Mocanu MM, Nissen A, Eckermann K, Khlistunova I, Biernat J, Drexler D, Petrova O, Schonig K, Bujard H, Mandelkow E, Zhou L, Rune G, Mandelkow EM (2008) The potential for beta-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous Tau in inducible mouse models of tauopathy. J Neurosci 28(3):737–748. doi:10.1523/JNEUROSCI.2824-07.2008

    PubMed  CAS  Google Scholar 

  32. Van der Jeugd A, Hochgrafe K, Ahmed T, Decker JM, Sydow A, Hofmann A, Wu D, Messing L, Balschun D, D'Hooge R, Mandelkow EM (2012) Cognitive defects are reversible in inducible mice expressing pro-aggregant full-length human Tau. Acta neuropathol 123(6):787–805. doi:10.1007/s00401-012-0987-3

    PubMed  Google Scholar 

  33. Baron U, Freundlieb S, Gossen M, Bujard H (1995) Co-regulation of two gene activities by tetracycline via a bidirectional promoter. Nucleic Acids Res 23(17):3605–3606

    PubMed  CAS  Google Scholar 

  34. Krestel HE, Mayford M, Seeburg PH, Sprengel R (2001) A GFP-equipped bidirectional expression module well suited for monitoring tetracycline-regulated gene expression in mouse. Nucleic Acids Res 29(7):E39

    PubMed  CAS  Google Scholar 

  35. Mayford M, Bach ME, Huang YY, Wang L, Hawkins RD, Kandel ER (1996) Control of memory formation through regulated expression of a CaMKII transgene. Science 274(5293):1678–1683

    PubMed  CAS  Google Scholar 

  36. Gossen M, Bujard H (2002) Studying gene function in eukaryotes by conditional gene inactivation. Annu Rev Genet 36:153–173. doi:10.1146/annurev.genet.36.041002.120114

    PubMed  CAS  Google Scholar 

  37. Luker KE, Luker GD (2010) Bioluminescence imaging of reporter mice for studies of infection and inflammation. Antivir Res 86(1):93–100. doi:10.1016/j.antiviral.2010.02.002

    PubMed  CAS  Google Scholar 

  38. Luo J, Ho P, Steinman L, Wyss-Coray T (2008) Bioluminescence in vivo imaging of autoimmune encephalomyelitis predicts disease. Journal of Neuroinflammation 5:6. doi:10.1186/1742-2094-5-6

    PubMed  Google Scholar 

  39. Burgin KE, Waxham MN, Rickling S, Westgate SA, Mobley WC, Kelly PT (1990) In situ hybridization histochemistry of Ca2+/calmodulin-dependent protein kinase in developing rat brain. J Neurosci: Off J Soc Neurosci 10(6):1788–1798

    CAS  Google Scholar 

  40. Crain B, Cotman C, Taylor D, Lynch G (1973) A quantitative electron microscopic study of synaptogenesis in the dentate gyrus of the rat. Brain Res 63:195–204

    PubMed  CAS  Google Scholar 

  41. Yamauchi T (2005) Neuronal Ca2+/calmodulin-dependent protein kinase II—discovery, progress in a quarter of a century, and perspective: implication for learning and memory. Biol Pharm Bull 28(8):1342–1354

    PubMed  CAS  Google Scholar 

  42. Wang Y, Mandelkow E (2012) Degradation of tau protein by autophagy and proteasomal pathways. Biochem Soc Trans 40(4):644–652. doi:10.1042/BST20120071

    PubMed  CAS  Google Scholar 

  43. Gould SJ, Subramani S (1988) Firefly luciferase as a tool in molecular and cell biology. Anal Biochem 175(1):5–13

    PubMed  CAS  Google Scholar 

  44. Keller GA, Gould S, Deluca M, Subramani S (1987) Firefly luciferase is targeted to peroxisomes in mammalian cells. Proc Natl Acad Sci U S A 84(10):3264–3268

    PubMed  CAS  Google Scholar 

  45. Ignowski JM, Schaffer DV (2004) Kinetic analysis and modeling of firefly luciferase as a quantitative reporter gene in live mammalian cells. Biotechnol Bioeng 86(7):827–834. doi:10.1002/bit.20059

    PubMed  CAS  Google Scholar 

  46. Thompson JF, Hayes LS, Lloyd DB (1991) Modulation of firefly luciferase stability and impact on studies of gene regulation. Gene 103(2):171–177

    PubMed  CAS  Google Scholar 

  47. Price JC, Guan S, Burlingame A, Prusiner SB, Ghaemmaghami S (2010) Analysis of proteome dynamics in the mouse brain. Proc Natl Acad Sci U S A 107(32):14508–14513. doi:10.1073/pnas.1006551107

    PubMed  CAS  Google Scholar 

  48. Riond JL, Riviere JE (1988) Pharmacology and toxicology of doxycycline. Vet Hum Toxicol 30(5):431–443

    PubMed  CAS  Google Scholar 

  49. Middeldorp J, Hol EM (2011) GFAP in health and disease. Prog Neurobiol 93(3):421–443. doi:10.1016/j.pneurobio.2011.01.005

    PubMed  CAS  Google Scholar 

  50. Zhu L, Ramboz S, Hewitt D, Boring L, Grass DS, Purchio AF (2004) Non-invasive imaging of GFAP expression after neuronal damage in mice. Neurosci Lett 367(2):210–212. doi:10.1016/j.neulet.2004.06.020

    PubMed  CAS  Google Scholar 

  51. Cho W, Hagemann TL, Johnson DA, Johnson JA, Messing A (2009) Dual transgenic reporter mice as a tool for monitoring expression of glial fibrillary acidic protein. J Neurochem 110(1):343–351. doi:10.1111/j.1471-4159.2009.06146.x

    PubMed  CAS  Google Scholar 

  52. Cordeau P Jr, Lalancette-Hebert M, Weng YC, Kriz J (2008) Live imaging of neuroinflammation reveals sex and estrogen effects on astrocyte response to ischemic injury. Stroke 39(3):935–942. doi:10.1161/STROKEAHA.107.501460

    PubMed  CAS  Google Scholar 

  53. Maysinger D, Behrendt M, Lalancette-Hebert M, Kriz J (2007) Real-time imaging of astrocyte response to quantum dots: in vivo screening model system for biocompatibility of nanoparticles. Nano Lett 7(8):2513–2520. doi:10.1021/nl071611t

    PubMed  CAS  Google Scholar 

  54. Di Giorgio FP, Carrasco MA, Siao MC, Maniatis T, Eggan K (2007) Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat Neurosci 10(5):608–614. doi:10.1038/nn1885

    PubMed  Google Scholar 

  55. Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H, Przedborski S (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 10(5):615–622. doi:10.1038/nn1876

    PubMed  CAS  Google Scholar 

  56. Cheng C, Zochodne DW (2002) In vivo proliferation, migration and phenotypic changes of Schwann cells in the presence of myelinated fibers. Neuroscience 115(1):321–329

    PubMed  CAS  Google Scholar 

  57. Keller AF, Gravel M, Kriz J (2009) Live imaging of amyotrophic lateral sclerosis pathogenesis: disease onset is characterized by marked induction of GFAP in Schwann cells. Glia 57(10):1130–1142. doi:10.1002/glia.20836

    PubMed  Google Scholar 

  58. Swarup V, Phaneuf D, Bareil C, Robertson J, Rouleau GA, Kriz J, Julien JP (2011) Pathological hallmarks of amyotrophic lateral sclerosis/frontotemporal lobar degeneration in transgenic mice produced with TDP-43 genomic fragments. Brain: J Neurol 134(Pt 9):2610–2626. doi:10.1093/brain/awr159

    Google Scholar 

  59. Verkhratsky A, Olabarria M, Noristani HN, Yeh CY, Rodriguez JJ (2010) Astrocytes in Alzheimer’s disease. Neurotherapeutics 7(4):399–412. doi:10.1016/j.nurt.2010.05.017

    PubMed  CAS  Google Scholar 

  60. Balducci C, Forloni G (2011) APP transgenic mice: their use and limitations. Neuromol Med 13(2):117–137. doi:10.1007/s12017-010-8141-7

    CAS  Google Scholar 

  61. Watts JC, Giles K, Grillo SK, Lemus A, DeArmond SJ, Prusiner SB (2011) Bioluminescence imaging of Abeta deposition in bigenic mouse models of Alzheimer’s disease. Proc Natl Acad Sci U S A 108(6):2528–2533. doi:10.1073/pnas.1019034108

    PubMed  CAS  Google Scholar 

  62. Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E, Neuenschwander A, Abramowski D, Frey P, Jaton AL, Vigouret JM, Paganetti P, Walsh DM, Mathews PM, Ghiso J, Staufenbiel M, Walker LC, Jucker M (2006) Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313(5794):1781–1784. doi:10.1126/science.1131864

    PubMed  CAS  Google Scholar 

  63. Stohr J, Watts JC, Mensinger ZL, Oehler A, Grillo SK, Dearmond SJ, Prusiner SB, Giles K (2012) Purified and synthetic Alzheimer’s amyloid beta (Abeta) prions. Proc Natl Acad Sci U S A 109(27):11025–11030. doi:10.1073/pnas.1206555109

    PubMed  CAS  Google Scholar 

  64. Kovacs GG, Budka H (2008) Prion diseases: from protein to cell pathology. Am J Pathol 172(3):555–565. doi:10.2353/ajpath.2008.070442

    PubMed  CAS  Google Scholar 

  65. Tamguney G, Francis KP, Giles K, Lemus A, DeArmond SJ, Prusiner SB (2009) Measuring prions by bioluminescence imaging. Proc Natl Acad Sci U S A 106(35):15002–15006. doi:10.1073/pnas.0907339106

    PubMed  CAS  Google Scholar 

  66. Beynon SB, Walker FR (2012) Microglial activation in the injured and healthy brain: what are we really talking about? Practical and theoretical issues associated with the measurement of changes in microglial morphology. Neuroscience. doi:10.1016/j.neuroscience.2012.07.029

  67. Olson JK, Miller SD (2004) Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol 173(6):3916–3924

    PubMed  CAS  Google Scholar 

  68. Lalancette-Hebert M, Moquin A, Choi AO, Kriz J, Maysinger D (2010) Lipopolysaccharide-QD micelles induce marked induction of TLR2 and lipid droplet accumulation in olfactory bulb microglia. Mol Pharm 7(4):1183–1194. doi:10.1021/mp1000372

    PubMed  CAS  Google Scholar 

  69. Malek R, Borowicz KK, Jargiello M, Czuczwar SJ (2007) Role of nuclear factor kappaB in the central nervous system. Pharmacol Rep 59(1):25–33

    PubMed  CAS  Google Scholar 

  70. Memet S (2006) NF-kappaB functions in the nervous system: from development to disease. Biochem Pharmacol 72(9):1180–1195. doi:10.1016/j.bcp.2006.09.003

    PubMed  CAS  Google Scholar 

  71. Blackwell TS, Yull FE, Chen CL, Venkatakrishnan A, Blackwell TR, Hicks DJ, Lancaster LH, Christman JW, Kerr LD (2000) Multiorgan nuclear factor kappa B activation in a transgenic mouse model of systemic inflammation. Am J Respir Crit Care Med 162(3 Pt 1):1095–1101

    PubMed  CAS  Google Scholar 

  72. Carlsen H, Moskaug JO, Fromm SH, Blomhoff R (2002) In vivo imaging of NF-kappa B activity. J Immunol 168(3):1441–1446

    PubMed  CAS  Google Scholar 

  73. Hubbard AK, Timblin CR, Shukla A, Rincon M, Mossman BT (2002) Activation of NF-kappaB-dependent gene expression by silica in lungs of luciferase reporter mice. Am J Physiol Lung Cell Mol Physiol 282(5):L968–L975. doi:10.1152/ajplung.00327.2001

    PubMed  CAS  Google Scholar 

  74. Zangani M, Carlsen H, Kielland A, Os A, Hauglin H, Blomhoff R, Munthe LA, Bogen B (2009) Tracking early autoimmune disease by bioluminescent imaging of NF-kappaB activation reveals pathology in multiple organ systems. Am J Pathol 174(4):1358–1367. doi:10.2353/ajpath.2009.080700

    PubMed  CAS  Google Scholar 

  75. Sadikot RT, Blackwell TS (2005) Bioluminescence imaging. Proc Am Thorac Soc 2(6):537–540. doi:10.1513/pats.200507-067DS, 511–532

    PubMed  CAS  Google Scholar 

  76. Dohlen G, Carlsen H, Blomhoff R, Thaulow E, Saugstad OD (2005) Reoxygenation of hypoxic mice with 100 % oxygen induces brain nuclear factor-kappa B. Pediatr Res 58(5):941–945. doi:10.1203/01.PDR.0000182595.62545.EE

    PubMed  CAS  Google Scholar 

  77. Dohlen G, Odland HH, Carlsen H, Blomhoff R, Thaulow E, Saugstad OD (2008) Antioxidant activity in the newborn brain: a luciferase mouse model. Neonatology 93(2):125–131. doi:10.1159/000107777

    PubMed  CAS  Google Scholar 

  78. Gutierrez H, Davies AM (2011) Regulation of neural process growth, elaboration and structural plasticity by NF-kappaB. Trends Neurosci 34(6):316–325. doi:10.1016/j.tins.2011.03.001

    PubMed  CAS  Google Scholar 

  79. Tesseur I, Wyss-Coray T (2006) A role for TGF-beta signaling in neurodegeneration: evidence from genetically engineered models. Current Alzheimer Res 3(5):505–513

    CAS  Google Scholar 

  80. Lin AH, Luo J, Mondshein LH, ten Dijke P, Vivien D, Contag CH, Wyss-Coray T (2005) Global analysis of Smad2/3-dependent TGF-beta signaling in living mice reveals prominent tissue-specific responses to injury. J Immunol 175(1):547–554

    PubMed  CAS  Google Scholar 

  81. Luo J, Wyss-Coray T (2009) Bioluminescence analysis of Smad-dependent TGF-beta signaling in live mice. Methods Mol Biol 574:193–202. doi:10.1007/978-1-60327-321-3_16

    PubMed  CAS  Google Scholar 

  82. de Heredia LL, Gengatharan A, Foster J, Mather S, Magoulas C (2011) Bioluminescence imaging of the brain response to acute inflammation in living C/EBP reporter mice. Neurosci Lett 497(2):134–138. doi:10.1016/j.neulet.2011.04.046

    Google Scholar 

  83. Li L, Fei Z, Ren J, Sun R, Liu Z, Sheng Z, Wang L, Sun X, Yu J, Wang Z, Fei J (2008) Functional imaging of interleukin 1 beta expression in inflammatory process using bioluminescence imaging in transgenic mice. BMC Immunol 9:49. doi:10.1186/1471-2172-9-49

    PubMed  Google Scholar 

  84. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132(4):645–660. doi:10.1016/j.cell.2008.01.033

    PubMed  CAS  Google Scholar 

  85. Couillard-Despres S, Finkl R, Winner B, Ploetz S, Wiedermann D, Aigner R, Bogdahn U, Winkler J, Hoehn M, Aigner L (2008) In vivo optical imaging of neurogenesis: watching new neurons in the intact brain. Mol Imaging 7(1):28–34

    PubMed  CAS  Google Scholar 

  86. Villeda SA, Luo J, Mosher KI, Zou B, Britschgi M, Bieri G, Stan TM, Fainberg N, Ding Z, Eggel A, Lucin KM, Czirr E, Park JS, Couillard-Despres S, Aigner L, Li G, Peskind ER, Kaye JA, Quinn JF, Galasko DR, Xie XS, Rando TA, Wyss-Coray T (2011) The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477(7362):90–94. doi:10.1038/nature10357

    PubMed  CAS  Google Scholar 

  87. Reumers V, Deroose CM, Krylyshkina O, Nuyts J, Geraerts M, Mortelmans L, Gijsbers R, Van den Haute C, Debyser Z, Baekelandt V (2008) Noninvasive and quantitative monitoring of adult neuronal stem cell migration in mouse brain using bioluminescence imaging. Stem Cells 26(9):2382–2390. doi:10.1634/stemcells.2007-1062

    PubMed  Google Scholar 

  88. Reekmans KP, Praet J, De Vocht N, Tambuyzer BR, Bergwerf I, Daans J, Baekelandt V, Vanhoutte G, Goossens H, Jorens PG, Ysebaert DK, Chatterjee S, Pauwels P, Van Marck E, Berneman ZN, Van der Linden A, Ponsaerts P (2011) Clinical potential of intravenous neural stem cell delivery for treatment of neuroinflammatory disease in mice? Cell Transplant 20(6):851–869. doi:10.3727/096368910X543411

    PubMed  Google Scholar 

  89. Gravel M, Weng YC, Kriz J (2011) Model system for live imaging of neuronal responses to injury and repair. Mol Imaging 10(6):434–445

    PubMed  CAS  Google Scholar 

  90. Denny JB (2006) Molecular mechanisms, biological actions, and neuropharmacology of the growth-associated protein GAP-43. Curr Neuropharmacol 4(4):293–304

    PubMed  CAS  Google Scholar 

  91. Lezi E, Swerdlow RH (2012) Mitochondria in neurodegeneration. Adv Exp Med Biol 942:269–286. doi:10.1007/978-94-007-2869-1_12

    PubMed  CAS  Google Scholar 

  92. Lauritzen KH, Moldestad O, Eide L, Carlsen H, Nesse G, Storm JF, Mansuy IM, Bergersen LH, Klungland A (2010) Mitochondrial DNA toxicity in forebrain neurons causes apoptosis, neurodegeneration, and impaired behavior. Mol Cell Biol 30(6):1357–1367. doi:10.1128/MCB.01149-09

    PubMed  CAS  Google Scholar 

  93. Lauritzen KH, Cheng C, Wiksen H, Bergersen LH, Klungland A (2011) Mitochondrial DNA toxicity compromises mitochondrial dynamics and induces hippocampal antioxidant defenses. DNA Repair (Amst) 10(6):639–653. doi:10.1016/j.dnarep.2011.04.011

    CAS  Google Scholar 

  94. Close DM, Xu T, Sayler GS, Ripp S (2011) In vivo bioluminescent imaging (BLI): noninvasive visualization and interrogation of biological processes in living animals. Sensors (Basel) 11(1):180–206. doi:10.3390/s110100180

    CAS  Google Scholar 

  95. Massoud TF, Paulmurugan R, De A, Ray P, Gambhir SS (2007) Reporter gene imaging of protein–protein interactions in living subjects. Curr Opin Biotechnol 18(1):31–37. doi:10.1016/j.copbio.2007.01.007

    PubMed  CAS  Google Scholar 

  96. Villalobos V, Naik S, Piwnica-Worms D (2007) Current state of imaging protein–protein interactions in vivo with genetically encoded reporters. Annu Rev Biomed Eng 9:321–349. doi:10.1146/annurev.bioeng.9.060906.152044

    PubMed  CAS  Google Scholar 

  97. Naik S, Piwnica-Worms D (2007) Real-time imaging of beta-catenin dynamics in cells and living mice. Proc Natl Acad Sci U S A 104(44):17465–17470. doi:10.1073/pnas.0704465104

    PubMed  CAS  Google Scholar 

  98. Kesarwala AH, Samrakandi MM, Piwnica-Worms D (2009) Proteasome inhibition blocks ligand-induced dynamic processing and internalization of epidermal growth factor receptor via altered receptor ubiquitination and phosphorylation. Cancer Res 69(3):976–983. doi:10.1158/0008-5472.CAN-08-2938

    PubMed  CAS  Google Scholar 

  99. Moroz E, Carlin S, Dyomina K, Burke S, Thaler HT, Blasberg R, Serganova I (2009) Real-time imaging of HIF-1alpha stabilization and degradation. PLoS One 4(4):e5077. doi:10.1371/journal.pone.0005077

    PubMed  Google Scholar 

  100. Ray P, Pimenta H, Paulmurugan R, Berger F, Phelps ME, Iyer M, Gambhir SS (2002) Noninvasive quantitative imaging of protein–protein interactions in living subjects. Proc Natl Acad Sci U S A 99(5):3105–3110. doi:10.1073/pnas.052710999

    PubMed  CAS  Google Scholar 

  101. Paulmurugan R, Umezawa Y, Gambhir SS (2002) Noninvasive imaging of protein–protein interactions in living subjects by using reporter protein complementation and reconstitution strategies. Proc Natl Acad Sci U S A 99(24):15608–15613. doi:10.1073/pnas.242594299

    PubMed  CAS  Google Scholar 

  102. Zhang L, Lee KC, Bhojani MS, Khan AP, Shilman A, Holland EC, Ross BD, Rehemtulla A (2007) Molecular imaging of Akt kinase activity. Nat Med 13(9):1114–1119. doi:10.1038/nm1608

    PubMed  CAS  Google Scholar 

  103. Coppola JM, Ross BD, Rehemtulla A (2008) Noninvasive imaging of apoptosis and its application in cancer therapeutics. Clin Cancer Res 14(8):2492–2501. doi:10.1158/1078-0432.CCR-07-0782

    PubMed  CAS  Google Scholar 

  104. Hickson J, Ackler S, Klaubert D, Bouska J, Ellis P, Foster K, Oleksijew A, Rodriguez L, Schlessinger S, Wang B, Frost D (2010) Noninvasive molecular imaging of apoptosis in vivo using a modified firefly luciferase substrate, Z-DEVD-aminoluciferin. Cell Death Differ 17(6):1003–1010. doi:10.1038/cdd.2009.205

    PubMed  CAS  Google Scholar 

  105. Shah K, Tung CH, Breakefield XO, Weissleder R (2005) In vivo imaging of S-TRAIL-mediated tumor regression and apoptosis. Mol Ther 11(6):926–931. doi:10.1016/j.ymthe.2005.01.017

    PubMed  CAS  Google Scholar 

  106. Pfleger KD, Eidne KA (2006) Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET). Nat Methods 3(3):165–174. doi:10.1038/nmeth841

    PubMed  CAS  Google Scholar 

  107. Xia Z, Rao J (2009) Biosensing and imaging based on bioluminescence resonance energy transfer. Curr Opin Biotechnol 20(1):37–44. doi:10.1016/j.copbio.2009.01.001

    PubMed  CAS  Google Scholar 

  108. Dragulescu-Andrasi A, Chan CT, De A, Massoud TF, Gambhir SS (2011) Bioluminescence resonance energy transfer (BRET) imaging of protein-protein interactions within deep tissues of living subjects. Proc Natl Acad Sci U S A 108(29):12060–12065. doi:10.1073/pnas.1100923108

    PubMed  CAS  Google Scholar 

  109. Loening AM, Wu AM, Gambhir SS (2007) Red-shifted Renilla reniformis luciferase variants for imaging in living subjects. Nat Methods 4(8):641–643. doi:10.1038/nmeth1070

    PubMed  CAS  Google Scholar 

  110. Walls ZF, Gambhir SS (2008) BRET-based method for detection of specific RNA species. Bioconjug Chem 19(1):178–184. doi:10.1021/bc700278n

    PubMed  CAS  Google Scholar 

  111. Gammon ST, Villalobos VM, Roshal M, Samrakandi M, Piwnica-Worms D (2009) Rational design of novel red-shifted BRET pairs: platforms for real-time single-chain protease biosensors. Biotechnol Prog 25(2):559–569. doi:10.1002/btpr.144

    PubMed  CAS  Google Scholar 

  112. Gross S, Gammon ST, Moss BL, Rauch D, Harding J, Heinecke JW, Ratner L, Piwnica-Worms D (2009) Bioluminescence imaging of myeloperoxidase activity in vivo. Nat Med 15(4):455–461. doi:10.1038/nm.1886

    PubMed  CAS  Google Scholar 

  113. Lee D, Khaja S, Velasquez-Castano JC, Dasari M, Sun C, Petros J, Taylor WR, Murthy N (2007) In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles. Nat Mater 6(10):765–769. doi:10.1038/nmat1983

    PubMed  CAS  Google Scholar 

  114. Stafford P, Abdelwahab MG, Kim do Y, Preul MC, Rho JM, Scheck AC (2010) The ketogenic diet reverses gene expression patterns and reduces reactive oxygen species levels when used as an adjuvant therapy for glioma. Nutr Metab (Lond) 7(74). doi:10.1186/1743-7075-7-74

  115. Hall DJ, Han SH, Chepetan A, Inui EG, Rogers M, Dugan LL (2012) Dynamic optical imaging of metabolic and NADPH oxidase-derived superoxide in live mouse brain using fluorescence lifetime unmixing. J Cereb Blood Flow Metab 32(1):23–32. doi:10.1038/jcbfm.2011.119

    PubMed  CAS  Google Scholar 

  116. Kundu K, Knight SF, Lee S, Taylor WR, Murthy N (2010) A significant improvement of the efficacy of radical oxidant probes by the kinetic isotope effect. Angew Chem 49(35):6134–6138. doi:10.1002/anie.201002228

    CAS  Google Scholar 

  117. Liu H, Ren G, Miao Z, Zhang X, Tang X, Han P, Gambhir SS, Cheng Z (2010) Molecular optical imaging with radioactive probes. PLoS One 5(3):e9470. doi:10.1371/journal.pone.0009470

    PubMed  Google Scholar 

  118. Robertson R, Germanos MS, Li C, Mitchell GS, Cherry SR, Silva MD (2009) Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys Med Biol 54(16):N355–N365. doi:10.1088/0031-9155/54/16/N01

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Eckhard Mandelkow for stimulating discussions throughout this project and Astrid Sydow and Dorthe Matenia for helpful suggestions regarding this review. The work of the laboratory described here was supported by grants from MPG, DZNE, WellcomeTrust/MRC, and Tau Consortium.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva-Maria Mandelkow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hochgräfe, K., Mandelkow, EM. Making the Brain Glow: In Vivo Bioluminescence Imaging to Study Neurodegeneration. Mol Neurobiol 47, 868–882 (2013). https://doi.org/10.1007/s12035-012-8379-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8379-1

Keywords

Navigation