Skip to main content
Log in

Inhibitory Synaptic Regulation of Motoneurons: A New Target of Disease Mechanisms in Amyotrophic Lateral Sclerosis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is the third most common adult-onset neurodegenerative disease. It causes the degeneration of motoneurons and is fatal due to paralysis, particularly of respiratory muscles. ALS can be inherited, and specific disease-causing genes have been identified, but the mechanisms causing motoneuron death in ALS are not understood. No effective treatments exist for ALS. One well-studied theory of ALS pathogenesis involves faulty RNA editing and abnormal activation of specific glutamate receptors as well as failure of glutamate transport resulting in glutamate excitotoxicity; however, the excitotoxicity theory is challenged by the inability of anti-glutamate drugs to have major disease-modifying effects clinically. Nevertheless, hyperexcitability of upper and lower motoneurons is a feature of human ALS and transgenic (tg) mouse models of ALS. Motoneuron excitability is strongly modulated by synaptic inhibition mediated by presynaptic glycinergic and GABAergic innervations and postsynaptic glycine receptors (GlyR) and GABAA receptors; yet, the integrity of inhibitory systems regulating motoneurons has been understudied in experimental models, despite findings in human ALS suggesting that they may be affected. We have found in tg mice expressing a mutant form of human superoxide dismutase-1 (hSOD1) with a Gly93 → Ala substitution (G93A-hSOD1), causing familial ALS, that subsets of spinal interneurons degenerate. Inhibitory glycinergic innervation of spinal motoneurons becomes deficient before motoneuron degeneration is evident in G93A-hSOD1 mice. Motoneurons in these ALS mice also have insufficient synaptic inhibition as reflected by smaller GlyR currents, smaller GlyR clusters on their plasma membrane, and lower expression of GlyR1α mRNA compared to wild-type motoneurons. In contrast, GABAergic innervation of ALS mouse motoneurons and GABAA receptor function appear normal. Abnormal synaptic inhibition resulting from dysfunction of interneurons and motoneuron GlyRs is a new direction for unveiling mechanisms of ALS pathogenesis that could be relevant to new therapies for ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rowland LP, Shneider NA (2001) Amyotrophic lateral sclerosis. N Engl J Med 344:1688–1700

    PubMed  CAS  Google Scholar 

  2. Zoccolella S, Santamato A, Lamberti P (2009) Current and emerging treatments for amyotrophic lateral sclerosis. Neuropsychiatr Dis Treat 5:577–595

    PubMed  CAS  Google Scholar 

  3. Eisen A (2009) Amyotrophic lateral sclerosis: a 40-year personal perspective. J Clin Neurosci 16:505–512

    PubMed  Google Scholar 

  4. Heath PR, Shaw PJ (2002) Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. Muscle Nerve 26:438–458

    PubMed  CAS  Google Scholar 

  5. Martin LJ (2010) Mitochondrial and cell death mechanisms in neurodegenerative diseases Pharmaceuticals 3:839–915

    CAS  Google Scholar 

  6. Martin LJ (2010) Olesoxime, a cholesterol-like neuroprotectant for the potential treatment of amyotrophic lateral sclerosis. IDrugs 13:1–13

    Google Scholar 

  7. Schymick JC, Talbot K, Traynor GJ (2007) Genetics of amyotrophic lateral sclerosis. Hum Mol Genet 16:R233–R242

    PubMed  CAS  Google Scholar 

  8. Turner BJ, Talbot K (2008) Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS. Prog Neurobiol 85:94–134

    PubMed  CAS  Google Scholar 

  9. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O'Regan JP, Deng HX et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    PubMed  CAS  Google Scholar 

  10. Kabashi E, Valdmains PN, Dion P, Spiegelman D, McConkey BJ, Vande Velde C, Bouchard J-P, Lacomblez L, Pochigaeva K, Salachas F, Pradat P-F, Camu W, Meininger V, Dupre N, Rouleau GA (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40:572–574

    PubMed  CAS  Google Scholar 

  11. Vance C, Rogelj B, Hortobagyi T, de Vos KJ, Nishimura AL, Sreedharan J, Hu X, Smith B, Ruddy D, Wright P, Ganesaligam J, Williams KL, Tripathi V, Saraj S, Al-Chalabi A, Leigh N, Blair IP, Nicholson G, de Belleroche J, Gallo J-M, Miller CC, Shaw CE (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323:1208–1211

    PubMed  CAS  Google Scholar 

  12. Maruyama H, Morino H, Ito H, Izumi Y, Kato H, Watanabe Y, Kinoshita Y, Kamada M, Nodera H, Suzuki H, Komure O, Matsuura S, Kobatake K, Morimoto N, Abe K, Suzuki N, Aoki M, Kawata A, Hirai T, Kato T, Ogasawara K, Hirano A, Takumi T, Kusaka H, Hagiwara K, Kaji R, Kawakami H (2010) Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465:223–226

    PubMed  CAS  Google Scholar 

  13. Chow CY, Lander JE, Bergren SK, Sapp PC, Grant AE, Jones JM, Everett L, Lenk GM, McKenna-Yasek DM, Weisman LS, Figlewicz D, Brown RH, Meisler MH (2009) Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am J Human Gen 84:85–88

    CAS  Google Scholar 

  14. Deng H-X, Hentati A, Tainer JA, Iqbal Z, Cayabyab A, Hung W-Y, Getzoff ED, Hu P, Herzfeldt B, Roos RP, Warner C, Deng G, Soriano E, Smyth C, Parge HE, Ahmed A, Roses AD, Hallewell RA, Pericak-Vance MA, Siddique T (1993) Amyotrophic lateral sclerosis and structural defects in Cu, Zn superoxide dismutase. Science 261:1047–1051

    PubMed  CAS  Google Scholar 

  15. Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112

    PubMed  CAS  Google Scholar 

  16. Rakhit R, Crow JP, Lepock JR, Kondejewski LH, Cashman NR, Chakrabartty A (2004) Monomeric Cu, Zn-superoxide dismutase is a common misfolding intermediate in the oxidation models of sporadic and familial amyotrophic sclerosis. J Biol Chem 279:15499–15504

    PubMed  CAS  Google Scholar 

  17. Borchelt DR, Lee MK, Slunt HH, Guarnieri M, Xu Z-S, Wong PC, Brown RH Jr, Price DL, Sisodia SS, Cleveland DW (1994) Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. Proc Natl Acad Sci USA 91:8292–8296

    PubMed  CAS  Google Scholar 

  18. Yim MB, Kang J-H, Yim H-S, Kwak H-S, Chock PB, Stadtman ER (1996) A gain-of-function of an amyotrophic lateral sclerosis-associated Cu, Zn-superoxide dismutase mutant: an enhancement of free radical formation due to a decrease in Km for hydrogen peroxide. Proc Natl Acad Sci USA 93:5709–5714

    PubMed  CAS  Google Scholar 

  19. Estévez AG, Crow JP, Sampson JB, Reiter C, Zhuang Y, Richardson GJ, Tarpey L, Barbeito MM, Beckman JS (1999) Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science 286:2498–2500

    PubMed  Google Scholar 

  20. Kabashi E, Valdmanis PN, Dion P, Rouleau GA (2007) Oxidized/misfolded superoxide dismutase-1: the cause of all amyotrophic lateral sclerosis? Ann Neurol 62:553–559

    PubMed  CAS  Google Scholar 

  21. Ezzi SA, Urushitani M, Julien J-P (2007) Wild-type superoxide dismutase acquires binding and toxic properties of ALS-linked mutant forms through oxidation. J Neurochem 102:170–178

    PubMed  Google Scholar 

  22. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    PubMed  CAS  Google Scholar 

  23. Liochev SI, Fridovich I (2003) Mutant Cu, Zn superoxide dismutases and familial amyotrophic lateral sclerosis: evaluation of oxidative hypotheses. Free Radic Biol Med 34:1383–1389

    PubMed  CAS  Google Scholar 

  24. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX et al (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264:1772–1775

    PubMed  CAS  Google Scholar 

  25. Martin LJ, Gertz B, Pan Y, Price AC, Molkentin JD, Chang Q (2009) The mitochondrial permeability transition pore in motor neurons: involvement in the pathobiology of ALS mice. Exp Neurol 218:33–346

    Google Scholar 

  26. Pramatarova A, Laganière J, Roussel J, Brisebois K, Rouleau GA (2001) Neuron-specific expression of mutant superoxide dismutase 1 in transgenic mice does not lead to motor impairment. J Neurosci 21:3369–3374

    PubMed  CAS  Google Scholar 

  27. Lino MM, Schneider C, Caroni P (2002) Accumulation of SOD1 mutants in postnatal motoneurons does not cause motoneuron pathology or motoneuron disease. J Neurosci 22:4825–4832

    PubMed  CAS  Google Scholar 

  28. Jaarsma D, Teuling E, Haasdijk ED, Zeeuw CI, Hoogenraad CC (2008) Neuron-specific expression of mutant superoxide dismutase is sufficient to induce amyotrophic lateral sclerosis in transgenic mice. J Neurosci 28:2075–2088

    PubMed  CAS  Google Scholar 

  29. Wang L, Sharma K, Deng H-X, Siddique T, Grisotti G, Liu E, Roos RP (2008) Restricted expression of mutant SOD1 in spinal motor neurons and interneurons induces motor neuron pathology. Neurobiol Dis 29:400–408

    PubMed  CAS  Google Scholar 

  30. Gong YH, Parsadanian AS, Andreeva A, Snider WD, Elliott JL (2000) Restricted expression of G86R Cu/Zn superoxide dismutase in astrocytes results in astrocytosis but does not cause motoneuron degeneration. J Neurosci 20:660–665

    PubMed  CAS  Google Scholar 

  31. Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H, Przedborski S (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 10:615–622

    PubMed  CAS  Google Scholar 

  32. Boillée S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, Kollias G, Cleveland DW (2006) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312:1389–1392

    PubMed  Google Scholar 

  33. Beers DR, Henkel JS, Xiao Q, Zhao W, Wang J, Yen AA, Siklos L, McKercher SR, Appel SH (2006) Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 103:16021–16026

    PubMed  CAS  Google Scholar 

  34. Xiao Q, Zhao W, Beers DR, Yen AA, Xie W, Henkel JS, Appel SH (2007) Mutant SOD1G93A microglia are more neurotoxic relative to wild-type microglia. J Neurochem 102:2008–2019

    PubMed  CAS  Google Scholar 

  35. Clement AM, Nguyen MD, Roberts EA et al (2003) Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302:113–117

    PubMed  CAS  Google Scholar 

  36. Martin LJ, Liu Z (2007) Adult olfactory bulb neural precursor cell grafts provide temporary protection from motor neuron degeneration, improve motor function, and extend survival in amyotrophic lateral sclerosis mice. J Neuropathol Exp Neurol 66:1002–1018

    PubMed  CAS  Google Scholar 

  37. Gowing G, Philips T, Van Wijmeersch B, Audet J-N, Dewil M, van Den Bosch L, Billiau AD, Robberecht W, Julien J-P (2008) Ablation of proliferating microglia does not affect motor neuron degeneration in amyotrophic lateral sclerosis caused by mutant superoxide dismutase. J Neurosci 28:10234–10244

    PubMed  CAS  Google Scholar 

  38. Wong M, Martin LJ (2010) Skeletal muscle-restricted expression of human SOD1 causes motor neuron degeneration in transgenic mice. Hum Mol Genet 9:2284–2302

    Google Scholar 

  39. Martin LJ (1999) Neuronal death in amyotrophic lateral sclerosis is apoptosis: possible contribution of a programmed cell death mechanism. J Neuropathol Exp Neurol 58:459–471

    PubMed  CAS  Google Scholar 

  40. Sathasivam S, Ince PG, Shaw PJ (2001) Apoptosis in amyotrophic lateral sclerosis: a review of the evidence. Neuropathol Appl Neurobiol 27:257–274

    PubMed  CAS  Google Scholar 

  41. Trumbull KA, Beckman JS (2009) A role for copper in the toxicity of zinc-deficient superoxide dismutase to motor neurons in amyotrophic lateral sclerosis. Antioxid Redox Signal 11:1627–1639

    PubMed  CAS  Google Scholar 

  42. Sasabe J, Aiso S (2010) Aberrant control of motoneuronal excitability in amyotrophic lateral sclerosis: excitatory glutamate/D-serine vs. inhibitory glycine/γ-aminobutanoic acid (GABA). Chem Biodiv 7:1479–1490

    CAS  Google Scholar 

  43. Rothstein JD, Martin LJ, Kuncl RW (1992) Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med 326:1464–1468

    PubMed  CAS  Google Scholar 

  44. Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW (1995) Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 38:73–84

    PubMed  CAS  Google Scholar 

  45. Plaitakis A (1990) Glutamate dysfunction and selective motor neuron degeneration in amyotrophic lateral sclerosis: a hypothesis. Ann Neurol 28:3–8

    PubMed  CAS  Google Scholar 

  46. Martin LJ, Brambrink AM, Lehmann C, Portera-Cailliau C, Koehler R, Rothstein J, Traystman RJ (1997) Hypoxia–ischemia causes abnormalities in glutamate transporters and death of astroglia and neurons in newborn striatum. Ann Neurol 42:335–348

    PubMed  CAS  Google Scholar 

  47. Hinoi E, Takarada T, Tsuchihashi Y, Yoneda Y (2005) Glutamate transporters as drug targets. Curr Drug Targets 4:211–220

    CAS  Google Scholar 

  48. Ginsberg SD, Rothstein JD, Price DL, Martin LJ (1996) Fimbria–fornix transections selectively down-regulate subtypes of glutamate transporter and glutamate receptor proteins in septum and hippocampus. J Neurochem 67:1208–1216

    PubMed  CAS  Google Scholar 

  49. Kawahara Y, Ito K, Sun H, Aizawa H, Kanazawa I, Kwak S (2004) Glutamate receptors: RNA editing and death of motor neurons. Nature 427:801

    PubMed  CAS  Google Scholar 

  50. Hollmann M, Hartley M, Heinemann S (1991) Ca2+ permeability of KA-AMPA-gated glutamate receptor channels depends on subunit composition. Science 252:851–853

    PubMed  CAS  Google Scholar 

  51. Burnashev N, Monyer H, Seeburg P, Sakmann B (1992) Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 8:189–198

    PubMed  CAS  Google Scholar 

  52. Lomeli H, Mosbacher J, Melcher T et al (1994) Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266:1709–1713

    PubMed  CAS  Google Scholar 

  53. Kawahara Y, Sun H, Ito K, Hideyama T, Aoki M, Sobue G, Tsuji S, Kwak S (2006) Underediting of GluR2 mRNA, a neuronal death inducing molecular change in sporadic ALS, does not occur in motor neurons in ALS1 or SBMA. Neurosci Res 545:11–14

    Google Scholar 

  54. Hideyama T, Yamashita T, Suzuki T, Tsuji S, Higuchi M, Seeburg PH, Takahashi R, Misawa H, Kwak S (2010) Induced loss of ADAR2 engenders slow death of motor neurons from Q/R site-unedited GluR2. J Neurosci 30:11917–11925

    PubMed  CAS  Google Scholar 

  55. Kuner R, Groom AJ, Bresink I et al (2005) Late-onset motoneuron disease caused by a functionally modified AMPA receptor subunit. Proc Natl Acad Sci USA 102:5826–5831

    PubMed  CAS  Google Scholar 

  56. Tateno M, Sadakata H, Tanaka M, Itohara S, Shin R-M, Miura M, Masuda M, Aosaki T, Urushitani M, Misawa H, Takahashi R (2004) Calcium-permeable AMPA receptors promote misfolding of mutant SOD1 protein and development of amyotrophic lateral sclerosis in a transgenic mouse model. Hum Mol Genet 13:2183–2196

    PubMed  CAS  Google Scholar 

  57. van Damme P, van den Bosch L, van Houtte CG, Robberecht W (2002) GluR2-dependent properties of AMPA receptors determine the selective vulnerability of motor neurons to excitotoxicity. J Neurophysiol 88:127–1287

    Google Scholar 

  58. Neumann E, Nachmansohn D (1975) Nerve excitability—towards an integrating concept. Biomembranes 7:99–166

    PubMed  CAS  Google Scholar 

  59. Pieri M, Albo F, Gaetti C, Spalloni A, Bengtson CP, Longone P, Cavalcanti S, Zona C (2003) Altered excitability of motor neurons in a transgenic mouse model of familial amyotrophic lateral sclerosis. Neurosci Lett 351:153–156

    PubMed  CAS  Google Scholar 

  60. Kuo JJ, Schonewille M, Siddique T, Schults AN, Fu R, Bar PR, Anelli R, Heckman CJ, Kroese AB (2004) Hyperexcitability of cultured spinal motoneurons from presymptomatic ALS mice. J Neurophysiol 91:571–575

    PubMed  Google Scholar 

  61. van Zundert B, Peuscher MH, Hynynen M, Chen A, Neve RL, Brown RH Jr, Constantine-Paton M, Bellingham MC (2008) Neonatal neuronal circuitry shows hyperexcitable disturbance in a mouse model of the adult-onset neurodegenerative disease amyotrophic lateral sclerosis. J Neurosci 28:10864–10874

    PubMed  Google Scholar 

  62. Pieri M, Gaetti C, Spalloni A, Cavalcanti S, Mercuri N, Bernardi G, Longone P, Zona C (2003) alpha-Amino-3-hydroxy-5-methyl-isoxazole-4-propionate receptors in spinal cord motor neurons are altered in transgenic mice overexpressing human Cu, Zn superoxide dismutase (Gly93– > Ala) mutation. Neuroscience 122:47–58

    PubMed  CAS  Google Scholar 

  63. Carunchio I, Curcio L, Pieri M, Pica F, Caioli S, Viscomi MT, Molinari M, Canu N, Bernardi G, Zona C (2010) Increased levels of p70S6 phosphorylation in the G93A mouse model of amyotrophic lateral sclerosis and in valine-exposed cortical neurons in culture. Exp Neurol 226:218–230

    PubMed  CAS  Google Scholar 

  64. Pambo-Pambo A, Durand J, Gueritaud J-P (2009) Early excitability changes in lumbar motoneurons of transgenic SOD1G85R and SOD1G93A-Low mice. J Neurophysiol 102:3627–3642

    PubMed  CAS  Google Scholar 

  65. Bories C, Amendola J, Lamotte d'Incamps B, Durand J (2007) Early electrophysiological abnormalities in lumbar motoneurons in a transgenic mouse model of amyotrophic lateral sclerosis. Eur J Neurosci 25:451–459

    PubMed  Google Scholar 

  66. Jiang M, Schuster JE, Fu R, Siddique T, Heckman CJ (2009) Progressive changes in synaptic inputs to motoneurons in adult sacral spinal cord of a mouse model of amyotrophic lateral sclerosis. J Neurosci 29:15031–15038

    PubMed  CAS  Google Scholar 

  67. Zona C, Pieri M, Carunchio I (2006) Voltage-dependent sodium channels in spinal cord motor neurons display rapid recovery from fast inactivation in a mouse model of amyotrophic lateral sclerosis. J Neurophysiol 96:3314–3322

    PubMed  Google Scholar 

  68. Spalloni A, Pascucci T, Albo F, Ferrari F, Puglisi-Allegra S, Zona C, Barnardi G, Longone P (2004) Altered vulnerability to kainite excitotoxicity of transgenic-Cu/Zn SOD1 neurons. Neuroreport 15:2477–2480

    PubMed  CAS  Google Scholar 

  69. Kuo JJ, Siddique T, Fu R, Heckman CJ (2005) Increased persistent Na(+) current and its effect on excitability in motoneurones cultured from mutant SOD1 mice. J Physiol 563:843–854

    PubMed  CAS  Google Scholar 

  70. Pieri M, Carunchio I, Curcio L, Mercuri NB, Zona C (2009) Increased persistent sodium current determines cortical hyperexcitability in a genetic model of familial amyotrophic lateral sclerosis. Exp Neurol 215:368–379

    PubMed  CAS  Google Scholar 

  71. Kata S (2008) Amyotrophic lateral sclerosis models and human neuropathology: similarities and differences. Acta Neuropathol 115:97–114

    Google Scholar 

  72. Sgobio C, Trabalza A, Spalloni A, Zona C, Carunchio I, Longone P, Ammassari-Teule M (2008) Abnormal medial prefrontal cortex connectivity and defective fear extinction in the presymptomatic G93A SOD1 mouse model of ALS. Genes Brain Behav 7:427–434

    PubMed  CAS  Google Scholar 

  73. Kwak S, Hideyama T, Yamashita T, Aizawa (2010) AMPA receptor-mediated neuromal death in sporadic ALS. Neuropathology 30:182–188

    PubMed  Google Scholar 

  74. Malessa S, Leigh PN, Bertel O, Sluga E, Hornykiewicz O (1991) Amyotrophic lateral sclerosis: glutamate dehydrogenase and transmitter amino acids in the spinal cord. J Neurol Neurosurg Psychiatry 54:984–988

    PubMed  CAS  Google Scholar 

  75. Niebroj-Dobosz I, Janik P (1999) Amino acids acting as transmitters in amyotrophic lateral sclerosis (ALS). Acta Neurol Scand 100:6–11

    PubMed  CAS  Google Scholar 

  76. Hayashi H, Suga M, Satake M, Tsubaki T (1981) Reduced glycine receptor in the spinal cord in amyotrophic lateral sclerosis. Ann Neurol 9:292–294

    PubMed  CAS  Google Scholar 

  77. Whitehouse PJ, Wamsley JK, Zarbin MA, Price DL, Tourtellotte WW, Kuhar MJ (1983) Amyotrophic lateral sclerosis: alterations in neurotransmitter receptors. Ann Neurol 14:8–16

    PubMed  CAS  Google Scholar 

  78. Petri S, Krampfl K, Hashemi F, Grothe C, Hori A, Dengler R, Bufler J (2003) Distribution of GABAA receptor mRNA in the motor cortex of ALS patients. J Neuropathol Exp Neurol 62:1041–1051

    PubMed  CAS  Google Scholar 

  79. Schutz B (2005) Imbalanced excitatory to inhibitory synaptic input precedes motor neuron degeneration in an animal model of amyotrophic lateral sclerosis. Neurobiol Dis 20:131–140

    PubMed  Google Scholar 

  80. Avossa D, Grandolfo M, Mazzarol F, Zatta M, Ballerini L (2006) Early signs of motoneuron vulnerability in a disease model system: characterization of transverse slice cultures of spinal cord isolated from embryonic ALS mice. Neuroscience 138:1179–1194

    PubMed  CAS  Google Scholar 

  81. Zeilhofer HU, Studler B, Arabadzisz D, Schweizer C, Ahmadi S, Layh B, Bosl MR, Fritschy J-M (2005) Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice. J Comp Neurol 482:123–141

    PubMed  CAS  Google Scholar 

  82. Goulding M (2009) Circuits controlling vertebrate locomotion: moving in a new direction. Nat Rev 10:507–518

    CAS  Google Scholar 

  83. Martin LJ (2011) An approach to experimental synaptic pathology using green fluorescent protein-transgenic mice and gene knockout mice to show mitochondrial permeability transition pore-driven excitotoxicity in interneurons and motoneurons. Toxicol Pathol 39:220–233

    PubMed  CAS  Google Scholar 

  84. Rekling JC, Funk GD, Bayliss DA, Dong XW, Feldman JL (2000) Synaptic control of motoneuronal excitability. Physiol Rev 80:767–852

    PubMed  CAS  Google Scholar 

  85. Pfeiffer F, Graham D, Betz H (1982) Purification by affinity chromatography of the glycine receptor of rat spinal cord. J Biol Chem 257:9389–9393

    PubMed  CAS  Google Scholar 

  86. Kuhse J, Betz H, Kirsch J (1995) The inhibitory glycine receptor: architecture, synaptic localization and molecular pathology of a postsynaptic ion-channel complex. Curr Opin Neurobiol 5:318–323

    PubMed  CAS  Google Scholar 

  87. Lynch JW (2009) Native glycine receptor subtypes and their physiological roles. Neuropharmacology 56:303–309

    PubMed  CAS  Google Scholar 

  88. Malosio ML, Marqueze-Pouey B, Kuhse J, Betz H (1991) Widespread expression of glycine receptor subunit mRNAs in the adult and developing rat brain. EMBO J 10:2401–2409

    PubMed  CAS  Google Scholar 

  89. Matzenbach B, Maulet Y, Sefton L, Courtier B, Avner P, Guenet JL, Betz H (1994) Structural analysis of mouse glycine receptor alpha subunit genes. Identification and chromosomal localization of a novel variant. J Biol Chem 269:2607–2612

    PubMed  CAS  Google Scholar 

  90. Olsen RW, Betz H (2006) GABA and glycine. In: Siegel GJ, Albers RW, Brady ST, Price DL (eds) Basic neurochemistry: molecular, cellular, and medical aspects, 7th edn. Elsevier, London, pp 291–301

    Google Scholar 

  91. Lorenzo L-E, Barbe A, Portalier P, Fritschy J-M, Bras H (2006) Differential expression of GABAA and glycine receptors in ALS-resistant vs ALS-vulnerable motoneurons: possible implications for selective vulnerability of motoneurons. Eur J Neurosci 23:3161–3170

    PubMed  Google Scholar 

  92. Hays AO (2006) The pathology of amyotrophic lateral sclerosis. In: Mitsumoto H, Przedborski S, Gordon PH (eds) Amyotrophic lateral sclerosis. Taylor & Francis, New York, pp 43–80

    Google Scholar 

  93. Chang Q, Martin LJ (2011) Glycine receptor channels in spinal motoneurons are abnormal in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurosci 31:2815–2827

    PubMed  CAS  Google Scholar 

  94. Yvon C, Czarnecki A, Streit J (2007) Riluzole-induced oscillations in spinal networks. J Neurophysiol 97:3607–3620

    PubMed  CAS  Google Scholar 

  95. Avossa D, Rosato-Siri MD, Mazzarol F, Ballerini L (2003) Spinal circuits formation: a study of developmentally regulated markers in organotypic cultures of embryonic mouse spinal cord. Neuroscience 122:391–405

    PubMed  CAS  Google Scholar 

  96. Carriedo SG, Yin HZ, Lamberta R, Weiss JH (1995) In vitro kainate injury to large, SMI-32(+) spinal neurons is Ca2+ dependent. Neuroreport 6:945–948

    PubMed  CAS  Google Scholar 

  97. Richards LJ, Murphy M, Dutton R, Kilpatrick TJ, Puche AC, Key B, Tan SS, Talman PS, Bartlett PF (1995) Lineage specification of neuronal precursors in the mouse spinal cord. Proc Natl Acad Sci USA 92:10079–10083

    PubMed  CAS  Google Scholar 

  98. Arber S, Han B, Mendelsohn M, Smith M, Jessell TM, Sockanathan S (1999) Requirement for the homeobox gene Hb9 in the consolidation of motor neuron identity. Neuron 23:659–674

    PubMed  CAS  Google Scholar 

  99. Thaler J, Harrison K, Sharma K, Lettieri K, Kehrl J, Pfaff SL (1999) Active suppression of interneuron programs within developing motor neurons revealed by analysis of homeodomain factor HB9. Neuron 23:675–687

    PubMed  CAS  Google Scholar 

  100. Wichterle H, Lieberam I, Porter JA, Jessell TM (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110:385–397

    PubMed  CAS  Google Scholar 

  101. Chang Q, Martin LJ (2011) Motoneuron subtypes show specificity in glycine receptor channel abnormalities in a transgenic mouse model of amyotrophic lateral sclerosis. Channels 5:1–5

    CAS  Google Scholar 

  102. Schnaar RI, Schaffner AE (1981) Separation of cell types from embryonic chicken and rat spinal cord: characterization of motoneuron-enriched fractions. J Neurosci 1:204–217

    PubMed  CAS  Google Scholar 

  103. Calof AL, Reichardt LF (1984) Motoneurons purified by cell sorting respond to two distinct activities in myotube-conditioned medium. Dev Biol 106:194–210

    PubMed  CAS  Google Scholar 

  104. Schaffner AE, St John PA, Barker JL (1987) Fluorescence-activated cell sorting of embryonic mouse and rat motoneurons and their long-term survival in vitro. J Neurosci 7:3088–3104

    PubMed  CAS  Google Scholar 

  105. Camu W, Henderson CE (1992) Purification of embryonic rat motoneurons by panning on a monoclonal antibody to the low-affinity NGF receptor. J Neurosci Methods 44:59–70

    PubMed  CAS  Google Scholar 

  106. O'Brien RJ, Fischbach GD (1986) Isolation of embryonic chick motoneurons and their survival in vitro. J Neurosci 6:3265–3274

    PubMed  Google Scholar 

  107. Carunchio I, Mollinari C, Pieri M, Merlo D, Zona C (2008) GAB(A) receptors present higher affinity and modified subunit composition in spinal motor neurons from a genetic model of amyotrophic lateral sclerosis. Eur J Neurosci 28:1275–1285

    PubMed  Google Scholar 

  108. Jackson MB, Lecar H, Brenneman DE, Fitzgerald S, Nelson PG (1982) Electrical development in spinal cord cell culture. J Neurosci 2:1052–1061

    PubMed  CAS  Google Scholar 

  109. Hamill OP, Bormann J, Sakmann B (1983) Activation of multiple-conductance state chloride channels in spinal neurones by glycine and GABA. Nature 305:805–808

    PubMed  CAS  Google Scholar 

  110. Nicola MA, Becker CM, Triller A (1992) Development of glycine receptor alpha subunit in cultivated rat spinal neurons: an immunocytochemical study. Neurosci Lett 138:173–178

    PubMed  CAS  Google Scholar 

  111. Hoch W, Betz H, Schramm M, Wolters I, Becker CM (1992) Modulation by NMDA receptor antagonists of glycine receptor isoform expression in cultured spinal cord neurons. Eur J Neurosci 4:389–395

    PubMed  Google Scholar 

  112. St John PA, Stephens SL (1993) Adult-type glycine receptors form clusters on embryonic rat spinal cord neurons developing in vitro. J Neurosci 13:2749–2757

    PubMed  CAS  Google Scholar 

  113. Allain A-E, Le Corronc H, Delpy A, Cazenave W, Meyrand P, Legendre P, Branchereau P (2011) Maturation of the GABAergic transmission in normal and pathological motoneurons. Neural Plast 905624.

  114. Lee K-Z, Fuller DD (2011) Neural control of phrenic motoneuron discharge. Respir Physiol Neurobiol 179:71–79

    PubMed  Google Scholar 

  115. Lane MA (2011) Spinal respiratory motoneurons and interneurons. Respir Physiol Neurobiol 179:3–13

    PubMed  Google Scholar 

  116. Saywell SA, Ford TW, Meehan CF, Todd AJ, Kirkwood PA (2011) Electrophysiological and morphological characterization of propriospinal interneurons in the thoracic spinal cord. J Neurophysiol 105:806–826

    PubMed  CAS  Google Scholar 

  117. Jursky F, Nelson N (1995) Localization of glycine neurotransmitter transporter (GLYT2) reveals correlation with the distribution of glycine receptor. J Neurochem 64:1026–1033

    PubMed  CAS  Google Scholar 

  118. Luque JM, Nelson N, Richards JG (1995) Cellular expression of glycine transporter 2 messenger RNA exclusively in rat hindbrain and spinal cord. Neuroscience 64:525–535

    PubMed  CAS  Google Scholar 

  119. Mentis GZ, Siembab VC, Zerda R, O’Donovan MJ, Alvarez FJ (2006) Primary afferent synapses on developing and adult Renshaw cells. J Neurosci 26:13297–13310

    PubMed  CAS  Google Scholar 

  120. Willis WD, Willis JC (1964) Location of Renshaw cells. Nature 204:1213–1214

    Google Scholar 

  121. Curtis DR, Game CJ, Lodge D, McCulloch RM (1976) A pharmacological study of Renshaw cell inhibition. J Physiol 258:227–242

    PubMed  CAS  Google Scholar 

  122. Alvarez FJ, Fyffe RE (2007) The continuing case for the Renshaw cell. J Physiol 584(1):31–45

    PubMed  CAS  Google Scholar 

  123. Eccles JC, Fatt P, Koketsu K (1954) Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. J Physiol 126:524–562

    PubMed  CAS  Google Scholar 

  124. Renshaw B (1941) Influence of discharge of motoneurones upon excitation of neighboring motoneurones. J Neurophysiol 4:167–183

    Google Scholar 

  125. Renshaw B (1946) Central effects of centripetal impulses in axon of spinal ventral roots. J Neurophysiol 9:191–204

    PubMed  CAS  Google Scholar 

  126. Alvarez FJ, Jonas PC, Sapir T, Hartley R, Berrocal MC, Geiman EJ, Todd AJ, Goulding M (2005) Postnatal phenotype and localization of spinal cord V1 derived interneurons. J Comp Neurol 493:177–192

    PubMed  CAS  Google Scholar 

  127. Eisen A, Weber M (2000) Neurophysiological evaluation of cortical function in the early diagnosis of ALS. Amyotroph Lateral Scler Other Motor Neuron Disord 1:S47–S51

    PubMed  Google Scholar 

  128. Enterzari-Taher M, Eisen A, Stewart H, Nakajima M (1997) Abnormalities of cortical inhibitory neurons in amyotrophic lateral sclerosis. Muscle Nerve 20:65–71

    PubMed  CAS  Google Scholar 

  129. Raynor EM, Shefner JM (1994) Recurrent inhibition is decreased in patients with amyotrophic lateral sclerosis. Neurology 44:2148–2153

    PubMed  CAS  Google Scholar 

  130. Mills KR (2003) The natural history of central motor abnormalities in amyotrophic lateral sclerosis. Brain 126:2558–2566

    PubMed  CAS  Google Scholar 

  131. Ziemann U, Winter M, Reimers CD, Reimers K, Tergau F, Paulus W (1997) Impaired motor cortex inhibition in patients with amyotrophic lateral sclerosis: evidence from paired transcranial magnetic stimulation. Neurology 49:1771–1772

    Google Scholar 

  132. Mazzocchio R, Rossi A (2010) Role of Renshaw cells in amyotrophic lateral sclerosis. Muscle Nerve 41:441–443

    PubMed  Google Scholar 

  133. Maekawa S, Al-Sarraj S, Kibble M, Landau S, Parnavelas J, Cotter D, Everall I, Leigh PN (2004) Cortical selective vulnerability in motor neuron disease: a morphometric study. Brain 127:1237–1251

    PubMed  CAS  Google Scholar 

  134. Swash M, Leader M, Brown A, Swettenham KW (1986) Focal loss of anterior horn cells in the cervical cord in motor neuron disease. Brain 109:939–952

    PubMed  Google Scholar 

  135. Oyanagi K, Ikuta F, Horikawa Y (1989) Evidence for sequential degeneration of the neurons in the intermediate zone of spinal cord in amyotrophic lateral sclerosis: a topographic and quantitative investigation. Acta Neuropathol 77:343–349

    PubMed  CAS  Google Scholar 

  136. Stephens B, Guiloff RJ, Navarrete R, Newman P, Nikhar N, Lewis P (2006) Widespread loss of neuronal populations in the spinal ventral horn in sporadic motor neuron disease. A morphometric study. J Neurol Sci 244:41–58

    PubMed  Google Scholar 

  137. Hayashi S, Amari M, Takatama M, Okamoto K (2007) Morphometric and topographical studies of small neurons in sporadic amyotrophic lateral sclerosis gray matter. Neuropathology 27:121–126

    PubMed  Google Scholar 

  138. Minciacchi D, Kassa RM, Del Tongo C, Mariotti R, Bentivoglio M (2009) Voronoi-based spatial analysis reveals selective interneuron changes in the cortex of FALS mice. Exp Neurol 215:77–86

    PubMed  CAS  Google Scholar 

  139. Morrison BM, Janssen WG, Gordon JW, Morrison JH (1998) Time course of neuropathology in the spinal cord of G86R superoxide dismutase transgenic mice. J Comp Neurol 391:64–77

    PubMed  CAS  Google Scholar 

  140. Martin LJ, Liu Z, Chen K, Price AC, Pan Y, Swaby JA, Golden WC (2007) Motor neuron degeneration in amyotrophic lateral sclerosis mutant superoxide dismutase-1 transgenic mice: mechanisms of mitochondriopathy and cell death. J Comp Neurol 500:20–46

    PubMed  CAS  Google Scholar 

  141. Chang Q, Martin LJ (2009) Glycinergic innervation of motoneurons is deficient in amyotrophic lateral sclerosis mice: a quantitative confocal analysis. Am J Pathol 174:574–585

    PubMed  Google Scholar 

  142. Sunico CR, Dominguez G, Garcia-Verdugo JM, Osta R, Montero F, Moreno-Lopez B (2011) Reduction in the motoneuron inhibitory/excitatory synaptic ratio in an early-symptomatic mouse model of amyotrophic lateral sclerosis. Brain Pathol 21:1–15

    PubMed  CAS  Google Scholar 

  143. Pullen AH, Athanasiou D (2009) Increase in presynaptic territory of C-terminals on lumbar motoneurons of G93A SOD1 mice during disease progression. Eur J Neurosci 29:551–561

    PubMed  CAS  Google Scholar 

  144. Sasaki S, Warita H, Komori T, Murakami T, Abe K, Iwata M (2006) Parvalbumin and calbindin D-28k immunoreactivity in transgenic mice with a G93A mutant SOD1 gene. Brain Res 1083:196–203

    PubMed  CAS  Google Scholar 

  145. Carr PA, Alvarez FJ, Leman EA, Fyffe RE (1998) Calbindin D28k expression in immunohistochemically identified Renshaw cells. Neuroreport 9:2657–2661

    PubMed  CAS  Google Scholar 

  146. Fornai F, Longone P, Cafaro L et al (2008) Lithium delays progression of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 105:2052–2057

    PubMed  CAS  Google Scholar 

  147. Grieshammer U, Lewandoski M, Prevette D, Oppenheim RW, Martin GR (1998) Muscle-specific cell ablation conditional upon Cre-mediated DNA recombination in transgenic mice leads to massive spinal and cranial motoneuron loss. Dev Biol 197:234–247

    PubMed  CAS  Google Scholar 

  148. Kablar B, Rudnicki MA (1999) Development in the absence of skeletal muscle results in the sequential ablation of motor neurons from spinal cord to the brain. Dev Biol 208:93–109

    PubMed  CAS  Google Scholar 

  149. Lim SMC, Guiloff RJ, Navarrete R (2000) Interneuronal survival and calbindin-D28K expression following motoneuron degeneration. J Neurol Sci 180:46–51

    PubMed  CAS  Google Scholar 

  150. Carr PA, Liu M, Zaruba RA (2001) Enzyme histochemical profile of immunohistochemically identified Renshaw cells in rat lumbar spinal cord. Brain Res Bull 54:669–674

    PubMed  CAS  Google Scholar 

  151. Miles R (2000) Diversity of inhibition. Science 287:244–246

    PubMed  CAS  Google Scholar 

  152. Gomeza J, Ohno K, Hulsmann S, Armsen W, Eulenburg V, Richter DW, Laube B, Betz H (2003) Deletion of the mouse glycine transporter 2 results in a hyperekplexia phenotype and postnatal lethality. Neuron 40:797–806

    PubMed  CAS  Google Scholar 

  153. Molon A, Di Giovanni S, Hathout Y, Natale J, Hoffman EP (2006) Functional recovery of glycine receptors in spastic murine model of startle disease. Neurobiol Dis 21:291–304

    PubMed  CAS  Google Scholar 

  154. Legendre P (2001) The glycinergic inhibitory synapse. Cell Mol Life Sci 58:760–793

    PubMed  CAS  Google Scholar 

  155. O’Shea SM, Becker L, Weiher H, Betz H, Laube B (2004) Propofol restores the function of “hyperekplexic” mutant glycine receptors in Xenopus oocytes and mice. J Neurosci 24:2322–2327

    PubMed  Google Scholar 

  156. Xu T-X, Gong N, Xu T-L (2005) Inhibitors of GlyT1 and GlyT2 differentially modulate inhibitory transmission. Neuroreport 16:1227–1231

    PubMed  CAS  Google Scholar 

  157. Chesnoy-Marchais D (2005) The estrogen receptor modulator tamoxifen enhances spontaneous glycinergic synaptic inhibition of hypoglossal motoneurons. Endocrinology 146:4302–4311

    PubMed  CAS  Google Scholar 

  158. Nishikawa Y, Sasaki A, Kuraishi Y (2010) Blockade of glycine transporter (GlyT2), but not GlyT1, ameliorates dynamic and static mechanical allodynia in mice with herpetic or postherpetic pain. J Pharmacol Sci 112:352–360

    PubMed  CAS  Google Scholar 

  159. Chesnoy-Marchais D (2009) Progesterone and allopregnanolone enhance the miniature synaptic release of glycine in the rat hypoglossal nucleus. Eur J Neurosci 30:2100–2111

    PubMed  Google Scholar 

  160. Beato M (2008) The time course of transmitter at glycinergic synapses onto motoneurons. J Neurosci 28:7412–7425

    PubMed  CAS  Google Scholar 

  161. Poyatos I, Ponce J, Aragon C, Gimenez C, Zafra F (1997) The glycine transporter GLYT2 is a reliable marker for glycine-immunoreactive neurons. Brain Res Mol Brain Res 49:63–70

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the U.S. Public Health Service, National Institutes of Health, National Institute on Aging (R01-AG016282), and National Institute of Neurological Disorders and Stroke (R01-NS034100, R01-NS065895, and R01-NS052098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee J. Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, L.J., Chang, Q. Inhibitory Synaptic Regulation of Motoneurons: A New Target of Disease Mechanisms in Amyotrophic Lateral Sclerosis. Mol Neurobiol 45, 30–42 (2012). https://doi.org/10.1007/s12035-011-8217-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-011-8217-x

Keywords

Navigation