Skip to main content

Advertisement

Log in

Bending Tau into Shape: The Emerging Role of Peptidyl-Prolyl Isomerases in Tauopathies

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The Hsp90-associated cis-trans peptidyl-prolyl isomerase—FK506 binding protein 51 (FKBP51)—was recently found to co-localize with the microtubule (MT)-associated protein tau in neurons and physically interact with tau in brain tissues from humans who died from Alzheimer’s disease (AD). Tau pathologically aggregates in neurons, a process that is closely linked with cognitive deficits in AD. Tau typically functions to stabilize and bundle MTs. Cellular events like calcium influx destabilize MTs, disengaging tau. This excess tau should be degraded, but sometimes it is stabilized and forms higher-order aggregates, a pathogenic hallmark of tauopathies. FKBP51 was also found to increase in forebrain neurons with age, further supporting a novel role for FKBP51 in tau processing. This, combined with compelling evidence that the prolyl isomerase Pin1 regulates tau stability and phosphorylation dynamics, suggests an emerging role for isomerization in tau pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Oddo S et al (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39(3):409–421

    Article  PubMed  CAS  Google Scholar 

  2. Frautschy SA, Baird A, Cole GM (1991) Effects of injected Alzheimer beta-amyloid cores in rat brain. Proc Natl Acad Sci U S A 88(19):8362–8366

    Article  PubMed  CAS  Google Scholar 

  3. Roberson ED et al (2011) Amyloid-beta/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer's disease. J Neurosci 31(2):700–711

    Article  PubMed  CAS  Google Scholar 

  4. Mukaetova-Ladinska EB et al (2000) Alpha-synuclein inclusions in Alzheimer and Lewy body diseases. J Neuropathol Exp Neurol 59(5):408–417

    PubMed  CAS  Google Scholar 

  5. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259

    Article  PubMed  CAS  Google Scholar 

  6. Hardy J et al (2006) Tangle diseases and the tau haplotypes. Alzheimer Dis Assoc Disord 20(1):60–62

    Article  PubMed  Google Scholar 

  7. Simon-Sanchez J et al (2009) Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat Genet 41(12):1308–1312

    Article  PubMed  CAS  Google Scholar 

  8. Shimura H, Miura-Shimura Y, Kosik KS (2004) Binding of tau to heat shock protein 27 leads to decreased concentration of hyperphosphorylated tau and enhanced cell survival. J Biol Chem 279(17):17957–17962

    Article  PubMed  CAS  Google Scholar 

  9. Shimura H et al (2004) CHIP-Hsc70 complex ubiquitinates phosphorylated tau and enhances cell survival. J Biol Chem 279(6):4869–4876

    Article  PubMed  CAS  Google Scholar 

  10. Carrettiero DC et al (2009) The cochaperone BAG2 sweeps paired helical filament-insoluble tau from the microtubule. J Neurosci 29(7):2151–2161

    Article  PubMed  CAS  Google Scholar 

  11. Petrucelli L et al (2004) CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum Mol Genet 13(7):703–714

    Article  PubMed  CAS  Google Scholar 

  12. Dickey CA et al (2006) Pharmacologic reductions of total tau levels; implications for the role of microtubule dynamics in regulating tau expression. Mol Neurodegener 1:6

    Article  PubMed  Google Scholar 

  13. Dickey CA et al (2006) HSP induction mediates selective clearance of tau phosphorylated at proline-directed Ser/Thr sites but not KXGS (MARK) sites. FASEB J 20(6):753–755

    PubMed  CAS  Google Scholar 

  14. Dickey CA et al (2008) Akt and CHIP coregulate tau degradation through coordinated interactions. Proc Natl Acad Sci U S A 105(9):3622–3627

    Article  PubMed  CAS  Google Scholar 

  15. Dickey CA, Petrucelli L (2006) Current strategies for the treatment of Alzheimer's disease and other tauopathies. Expert Opin Ther Targets 10(5):665–676

    Article  PubMed  CAS  Google Scholar 

  16. Dickey CA et al (2006) Deletion of the ubiquitin ligase CHIP leads to the accumulation, but not the aggregation, of both endogenous phospho- and caspase-3-cleaved tau species. J Neurosci 26(26):6985–6996

    Article  PubMed  CAS  Google Scholar 

  17. Dou F et al (2003) Chaperones increase association of tau protein with microtubules. Proc Natl Acad Sci U S A 100(2):721–726

    Article  PubMed  CAS  Google Scholar 

  18. Luo W et al (2007) Roles of heat-shock protein 90 in maintaining and facilitating the neurodegenerative phenotype in tauopathies. Proc Natl Acad Sci U S A 104(22):9511–9516

    Article  PubMed  CAS  Google Scholar 

  19. Jinwal UK et al (2010) The Hsp90 cochaperone, FKBP51, increases Tau stability and polymerizes microtubules. J Neurosci 30(2):591–599

    Article  PubMed  CAS  Google Scholar 

  20. Jinwal UK et al (2010) Hsp70 ATPase modulators as therapeutics for Alzheimer's and other neurodegenerative diseases. Mol Cell Pharmacol 2(2):43–46

    PubMed  CAS  Google Scholar 

  21. Jinwal UK et al (2010) Hsc70 rapidly engages tau after microtubule destabilization. J Biol Chem 285(22):16798–16805

    Article  PubMed  CAS  Google Scholar 

  22. Wang CL, Yang HL (2011) Conserved residues in the subunit interface of tau glutathione s-transferase affect catalytic and structural functions. J Integr Plant Biol 53(1):35–43

    Article  PubMed  CAS  Google Scholar 

  23. Lu KP, Zhou XZ (2007) The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nat Rev Mol Cell Biol 8(11):904–916

    Article  PubMed  CAS  Google Scholar 

  24. Lu PJ et al (1999) The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 399(6738):784–788

    Article  PubMed  CAS  Google Scholar 

  25. Romero PR et al (2006) Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proc Natl Acad Sci U S A 103(22):8390–8395

    Article  PubMed  CAS  Google Scholar 

  26. Galas MC et al (2006) The peptidylprolyl cis/trans-isomerase Pin1 modulates stress-induced dephosphorylation of Tau in neurons. Implication in a pathological mechanism related to Alzheimer disease. J Biol Chem 281(28):19296–19304

    Article  PubMed  CAS  Google Scholar 

  27. Pei H et al (2009) FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt. Cancer Cell 16(3):259–266

    Article  PubMed  CAS  Google Scholar 

  28. Harding MW et al (1989) A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature 341(6244):758–760

    Article  PubMed  CAS  Google Scholar 

  29. Sugata H et al (2009) A peptidyl-prolyl isomerase, FKBP12, accumulates in Alzheimer neurofibrillary tangles. Neurosci Lett 459(2):96–99

    Article  PubMed  CAS  Google Scholar 

  30. Yoshiyama Y et al (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53(3):337–351

    Article  PubMed  CAS  Google Scholar 

  31. Armistead DM et al (1995) Design, synthesis and structure of non-macrocyclic inhibitors of FKBP12, the major binding protein for the immunosuppressant FK506. Acta Crystallogr D Biol Crystallogr 51(Pt 4):522–528

    Article  PubMed  CAS  Google Scholar 

  32. Zhao L et al (2006) FK506-binding protein ligands: structure-based design, synthesis, and neurotrophic/neuroprotective properties of substituted 5,5-dimethyl-2-(4-thiazolidine)carboxylates. J Med Chem 49(14):4059–4071

    Article  PubMed  CAS  Google Scholar 

  33. Davies TH, Ning YM, Sanchez ER (2005) Differential control of glucocorticoid receptor hormone-binding function by tetratricopeptide repeat (TPR) proteins and the immunosuppressive ligand FK506. Biochemistry 44(6):2030–2038

    Article  PubMed  CAS  Google Scholar 

  34. Davies TH, Sanchez ER (2005) FKBP52. Int J Biochem Cell Biol 37(1):42–47

    Article  PubMed  CAS  Google Scholar 

  35. Chambraud B et al (2010) A role for FKBP52 in Tau protein function. Proc Natl Acad Sci U S A 107(6):2658–2663

    Article  PubMed  CAS  Google Scholar 

  36. Quinta HR et al (2010) Subcellular rearrangement of hsp90-binding immunophilins accompanies neuronal differentiation and neurite outgrowth. J Neurochem 115(3):716–734

    Article  PubMed  CAS  Google Scholar 

  37. Ruan B et al (2008) Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities. Proc Natl Acad Sci U S A 105(1):33–38

    Article  PubMed  CAS  Google Scholar 

  38. Chambraud B et al (2007) The immunophilin FKBP52 specifically binds to tubulin and prevents microtubule formation. FASEB J 21(11):2787–2797

    Article  PubMed  CAS  Google Scholar 

  39. Yong W et al (2007) Essential role for co-chaperone Fkbp52 but not Fkbp51 in androgen receptor-mediated signaling and physiology. J Biol Chem 282(7):5026–5036

    Article  PubMed  CAS  Google Scholar 

  40. Binder EB et al (2008) Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA 299(11):1291–1305

    Article  PubMed  CAS  Google Scholar 

  41. Nielsen JV et al (2004) Fkbp8: novel isoforms, genomic organization, and characterization of a forebrain promoter in transgenic mice. Genomics 83(1):181–192

    Article  PubMed  CAS  Google Scholar 

  42. Shirane M et al (2008) Regulation of apoptosis and neurite extension by FKBP38 is required for neural tube formation in the mouse. Genes Cells 13(6):635–651

    Article  PubMed  CAS  Google Scholar 

  43. Edlich F et al (2006) The specific FKBP38 inhibitor N-(N',N'-dimethylcarboxamidomethyl)cycloheximide has potent neuroprotective and neurotrophic properties in brain ischemia. J Biol Chem 281(21):14961–14970

    Article  PubMed  CAS  Google Scholar 

  44. Fischer G, Bang H, Mech C (1984) Determination of enzymatic catalysis for the cis-trans-isomerization of peptide binding in proline-containing peptides. Biomed Biochim Acta 43(10):1101–1111

    PubMed  CAS  Google Scholar 

  45. Fischer G et al (1989) Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature 337(6206):476–478

    Article  PubMed  CAS  Google Scholar 

  46. Handschumacher RE et al (1984) Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science 226(4674):544–547

    Article  PubMed  CAS  Google Scholar 

  47. Takahashi N, Hayano T, Suzuki M (1989) Peptidyl-prolyl cis-trans isomerase is the cyclosporin A-binding protein cyclophilin. Nature 337(6206):473–475

    Article  PubMed  CAS  Google Scholar 

  48. Ortiz M et al (2006) Patterns of evolution of host proteins involved in retroviral pathogenesis. Retrovirology 3:11

    Article  PubMed  Google Scholar 

  49. Ke H, Huai Q (2004) Crystal structures of cyclophilin and its partners. Front Biosci 9:2285–2296

    Article  PubMed  CAS  Google Scholar 

  50. Kim IS et al (2011) A cyclophilin A CPR1 overexpression enhances stress acquisition in Saccharomyces cerevisiae. Mol Cells 29(6):567–574

    Article  Google Scholar 

  51. Lian Q et al (2001) Selective changes of calcineurin (protein phosphatase 2B) activity in Alzheimer's disease cerebral cortex. Exp Neurol 167(1):158–165

    Article  PubMed  CAS  Google Scholar 

  52. Barinaga M (1991) The secret of saltiness. Science 254(5032):654–655

    Article  PubMed  CAS  Google Scholar 

  53. Galigniana MD et al (2004) Cyclophilin-A is bound through its peptidylprolyl isomerase domain to the cytoplasmic dynein motor protein complex. J Biol Chem 279(53):55754–55759

    Article  PubMed  CAS  Google Scholar 

  54. Barrientos SA et al (2011) Axonal degeneration is mediated by the mitochondrial permeability transition pore. J Neurosci 31(3):966–978

    Article  PubMed  CAS  Google Scholar 

  55. Pirkl F, Buchner J (2001) Functional analysis of the Hsp90-associated human peptidyl prolyl cis/trans isomerases FKBP51, FKBP52 and Cyp40. J Mol Biol 308(4):795–806

    Article  PubMed  CAS  Google Scholar 

  56. Li J, Richter K, Buchner J (2011) Mixed Hsp90-cochaperone complexes are important for the progression of the reaction cycle. Nat Struct Mol Biol 18(1):61–66

    Article  PubMed  CAS  Google Scholar 

  57. Ratajczak T et al (2009) Cyclophilin 40: an Hsp90-cochaperone associated with apo-steroid receptors. Int J Biochem Cell Biol 41(8–9):1652–1655

    Article  PubMed  CAS  Google Scholar 

  58. Kimmins S, MacRae TH (2000) Maturation of steroid receptors: an example of functional cooperation among molecular chaperones and their associated proteins. Cell Stress Chaperones 5(2):76–86

    Article  PubMed  CAS  Google Scholar 

  59. Naylor DJ, Hoogenraad NJ, Hoj PB (1999) Characterisation of several Hsp70 interacting proteins from mammalian organelles. Biochim Biophys Acta 1431(2):443–450

    Article  PubMed  CAS  Google Scholar 

  60. Lane-Guermonprez L et al (2005) Synapsin associates with cyclophilin B in an ATP- and cyclosporin A-dependent manner. J Neurochem 93(6):1401–1411

    Article  PubMed  CAS  Google Scholar 

  61. Morot-Gaudry-Talarmain Y (2009) Physical and functional interactions of cyclophilin B with neuronal actin and peroxiredoxin-1 are modified by oxidative stress. Free Radic Biol Med 47(12):1715–1730

    Article  PubMed  CAS  Google Scholar 

  62. Bergsma DJ et al (1991) The cyclophilin multigene family of peptidyl-prolyl isomerases. Characterization of three separate human isoforms. J Biol Chem 266(34):23204–23214

    PubMed  CAS  Google Scholar 

  63. Ozaki K et al (1996) Cloning, expression and chromosomal mapping of a novel cyclophilin-related gene (PPIL1) from human fetal brain. Cytogenet Cell Genet 72(2–3):242–245

    Article  PubMed  CAS  Google Scholar 

  64. Carson R et al (2009) Variation in RTN3 and PPIL2 genes does not influence platelet membrane beta-secretase activity or susceptibility to alzheimer's disease in the northern Irish population. Neuromolecular Med 11(4):337–344

    Article  PubMed  CAS  Google Scholar 

  65. Zeng L et al (2001) Molecular cloning, structure and expression of a novel nuclear RNA-binding cyclophilin-like gene (PPIL4) from human fetal brain. Cytogenet Cell Genet 95(1–2):43–47

    Article  PubMed  CAS  Google Scholar 

  66. Nagase T et al (1999) Prediction of the coding sequences of unidentified human genes. XV. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res 6(5):337–345

    Article  PubMed  CAS  Google Scholar 

  67. Meza-Zepeda LA et al (2002) Positional cloning identifies a novel cyclophilin as a candidate amplified oncogene in 1q21. Oncogene 21(14):2261–2269

    Article  PubMed  CAS  Google Scholar 

  68. Shmueli O et al (2003) GeneNote: whole genome expression profiles in normal human tissues. C R Biol 326(10–11):1067–1072

    Article  PubMed  CAS  Google Scholar 

  69. Yanai I et al (2005) Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics 21(5):650–659

    Article  PubMed  CAS  Google Scholar 

  70. Chen S et al (1998) Differential interactions of p23 and the TPR-containing proteins Hop, Cyp40, FKBP52 and FKBP51 with Hsp90 mutants. Cell Stress Chaperones 3(2):118–129

    Article  PubMed  CAS  Google Scholar 

  71. Mi H et al (1996) A nuclear RNA-binding cyclophilin in human T cells. FEBS Lett 398(2–3):201–205

    Article  PubMed  CAS  Google Scholar 

  72. Zhou Z et al (2001) Molecular cloning and characterization of a novel peptidylprolyl isomerase (cyclophilin)-like gene (PPIL3) from human fetal brain. Cytogenet Cell Genet 92(3–4):231–236

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work supported by NIH R01NS073899 and R00AG031291, The Abe and Irene Pollin/CurePSP Fund, AFAR, and Alzheimer's Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chad A. Dickey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koren, J., Jinwal, U.K., Davey, Z. et al. Bending Tau into Shape: The Emerging Role of Peptidyl-Prolyl Isomerases in Tauopathies. Mol Neurobiol 44, 65–70 (2011). https://doi.org/10.1007/s12035-011-8182-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-011-8182-4

Keywords

Navigation