Skip to main content

Advertisement

Log in

Lipids, Mitochondria and Cell Death: Implications in Neuro-oncology

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Polyunsaturated fatty acids (PUFAs) are known to inhibit cell proliferation of many tumour types both in vitro and in vivo. Their capacity to interfere with cell proliferation has been linked to their induction of reactive oxygen species (ROS) production in tumour tissues leading to cell death through apoptosis. However, the exact mechanisms of action of PUFAs are far from clear, particularly in brain tumours. The loss of bound hexokinase from the mitochondrial voltage-dependent anion channel has been directly related to loss of protection from apoptosis, and PUFAs can induce this loss of bound hexokinase in tumour cells. Tumour cells overexpressing Akt activity, including gliomas, are sensitised to ROS damage by the Akt protein and may be good targets for chemotherapeutic agents, which produce ROS, such as PUFAs. Cardiolipin peroxidation may be an initial event in the release of cytochrome c from the mitochondria, and enriching cardiolipin with PUFA acyl chains may lead to increased peroxidation and therefore an increase in apoptosis. A better understanding of the metabolism of fatty acids and eicosanoids in primary brain tumours such as gliomas and their influence on energy balance will be fundamental to the possible targeting of mitochondria in tumour treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (2007) WHO classification of tumours of the central nervous system, 4th edn. IARC, France

    Google Scholar 

  2. Booyens J, Engelbrecht P, le Roux S, Louwrens CC, Van der Merwe CF, Katzeff IE (1984) Some effects of the essential fatty acids linoleic acid and alpha-linolenic acid and of their metabolites gamma-linolenic acid, arachidonic acid, eicosapentaenoic acid, docosahexaenoic acid, and of prostaglandins A1 and E1 on the proliferation of human osteogenic sarcoma cells in culture. Prostaglandins Leukot Med 15(1):15–33

    PubMed  CAS  Google Scholar 

  3. Bégin ME, Ells G, Das UN, Horrobin DF (1986) Differential killing of human carcinoma cells supplemented with n-3 and n-6 polyunsaturated fatty acids. J Natl Cancer Inst 77(5):1053–1062

    PubMed  Google Scholar 

  4. Fujiwara F, Todo S, Imashuku S (1986) Antitumor effect of gamma-linolenic acido n cultured human neuroblastoma cells. Prostaglandins Leukot Med 23(2–3):311–320

    PubMed  CAS  Google Scholar 

  5. Bégin ME, Ells G, Horrobin DF (1988) Polyunsaturated fatty acid-induced cytotoxicity against tumor cells and its relationship to lipid peroxidation. J Natl Cancer Inst 80(3):188–194

    PubMed  Google Scholar 

  6. Das UN, Huang YS, Begin ME, Ells G, Horrobin DF (1987) Uptake and distribution of cis-unsaturated fatty acids and their effect on free radical generation in normal and tumor cells in vitro. Free Radic Biol Med 3:9–14

    PubMed  CAS  Google Scholar 

  7. Colquhoun A, Curi R (1998) Effects of saturated and polyunsaturated fatty acids on human tumor cell proliferation. Gen Pharmac 30:191–194

    CAS  Google Scholar 

  8. Hawkins RA, Sangster K, Arends MJ (1998) Apoptotic death of pancreatic cancer cells induced by polyunsaturated fatty acids varies with double bond number and involves an oxidative mechanism. J Pathol 185(1):61–70

    PubMed  CAS  Google Scholar 

  9. Vartak S, McCaw R, Davis CS, Robbins ME, Spector AA (1998) Gamma-linolenic acid (GLA) is cytotoxic to 36B10 malignant rat astrocytoma cells but not to ‘normal’ rat astrocytes. Br J Cancer 77(10):1612–1620

    PubMed  CAS  Google Scholar 

  10. Das UN, Begin ME, Ells G, Huang YS, Horrobin DF (1987) Polyunsaturated fatty acids augment free radical generation in tumor cells in vitro. B B Res Com 145:15–24

    CAS  Google Scholar 

  11. Das UN (1991) Tumoricidal action of cis-unsaturated fatty acids and their relationship to free radicals and lipid peroxidation. Cancer Letts 56:235–243

    CAS  Google Scholar 

  12. Vartak S, Robbins ME, Spector AA (1999) The selective cytotoxicity of gamma-linolenic acid (GLA) is associated with increased oxidative stress. Adv Exp Med Biol 469:493–498

    PubMed  CAS  Google Scholar 

  13. Das UN (2002) A radical approach to cancer. Med Sci Monit 8(4):RA79–RA92

    PubMed  Google Scholar 

  14. Rose DP, Connolly JM (1999) Omega-3 fatty acids as cancer chemopreventive agents. Pharmacol Ther 83(3):217–244

    PubMed  CAS  Google Scholar 

  15. Nkondjock A, Shatenstein B, Maisonneuve P, Ghadirian P (2003) Specific fatty acids and human colorectal cancer: an overview. Cancer Detect Prev 27(1):55–66

    PubMed  CAS  Google Scholar 

  16. Simopoulos AP (2001) The Mediterranean diets: what is so special about the diet of Greece? The scientific evidence. J Nutr 131(11 Suppl):3065S–3073S

    PubMed  CAS  Google Scholar 

  17. Ziegler RG, Hoover RN, Pike MC, Hildesheim A, Nomura AM, West DW, Wu-Williams AH, Kolonel LN, Horn-Ross PL, Rosenthal JF, Hyer MB (1993) Migration patterns and breast cancer risk in Asian-American women. J Natl Cancer Inst 85(22):1819–1827

    PubMed  CAS  Google Scholar 

  18. Hillyard LA, Abraham S (1979) Effect of dietary polyunsaturated fatty acids on growth of mammary adenocarcinomas in mice and rats. Cancer Res 39(11):4430–4437

    PubMed  CAS  Google Scholar 

  19. Abraham S, Hillyard LA (1983) Effect of dietary 18-carbon fatty acids on growth of transplantable mammary adenocarcinomas in mice. J Natl Cancer Inst 71(3):601–605

    PubMed  CAS  Google Scholar 

  20. Welsch CW (1992) Relationship between dietary fat and experimental mammary tumorigenesis: a review and critique. Cancer Res 52(7 Suppl):2040s–2048s, 1

    PubMed  CAS  Google Scholar 

  21. Sauer LA, Blask DE, Dauchy RT (2007) Dietary factors and growth and metabolism in experimental tumors. J Nutr Biochem 18(10):637–649

    PubMed  CAS  Google Scholar 

  22. Rose DP, Connolly JM (1993) Effects of dietary omega-3 fatty acids on human breast cancer growth and metastases in nude mice. J Natl Cancer Inst 85(21):1743–1747

    PubMed  CAS  Google Scholar 

  23. Cohen LA, Chen-Backlund JY, Sepkovic DW, Sugie S (1993) Effect of varying proportions of dietary menhaden and corn oil on experimental rat mammary tumor promotion. Lipids 28(5):449–456

    PubMed  CAS  Google Scholar 

  24. Gonzalez MJ, Schemmel RA, Dugan L Jr, Gray JI, Welsch CW (1993) Dietary fish oil inhibits human breast carcinoma growth: a function of increased lipid peroxidation. Lipids 28(9):827–832

    PubMed  CAS  Google Scholar 

  25. Chapkin RS, McMurray DN, Lupton JR (2007) Colon cancer, fatty acids and anti-inflammatory compounds. Curr Opin Gastroenterol 23(1):48–54

    PubMed  CAS  Google Scholar 

  26. Rose DP, Connolly JM, Liu XH (1997) Fatty acid regulation of breast cancer cell growth and invasion. Adv Exp Med Biol 422:47–55

    PubMed  CAS  Google Scholar 

  27. Colquhoun A, Miyake JA, Benadiba M (2009) Fatty acids, eicosanoids and cancer. Nutritional Therapy and Metabolism 27(3):105–112

    Google Scholar 

  28. Kobayashi N, Barnard RJ, Henning SM, Elashoff D, Reddy ST, Cohen P, Leung P, Hong-Gonzalez J, Freedland SJ, Said J, Gui D, Seeram NP, Popoviciu LM, Bagga D, Heber D, Glaspy JA, Aronson WJ (2006) Effect of altering dietary omega-6/omega-3 fatty acid ratios on prostate cancer membrane composition, cyclooxygenase-2, and prostaglandin E2. Clin Cancer Res 12(15):4662–4670

    PubMed  CAS  Google Scholar 

  29. Nathoo N, Barnett GH, Golubic M (2004) The eicosanoid cascade: possible role in gliomas and meningiomas. J Clin Pathol 57(1):6–13

    PubMed  CAS  Google Scholar 

  30. Gillies RJ, Gatenby RA (2007) Adaptive landscapes and emergent phenotypes: why do cancers have high glycolysis? J Bioenerg Biomembr 39:251–257

    PubMed  CAS  Google Scholar 

  31. Herrmann PC, Herrmann EC (2007) Oxygen metabolism and a potential role for cytochrome c oxidase in the Warburg effect. J Bioenerg Biomembr 39:247–250

    PubMed  CAS  Google Scholar 

  32. Prip-Buus C, Bouthillier-Voisin AC, Kohl C, Demaugre F, Girard J, Pegorier JP (1992) Evidence for an impaired long-chain fatty acid oxidation and ketogenesis in Fao hepatoma cells. Eur J Biochem 209(1):291–298

    PubMed  CAS  Google Scholar 

  33. Colquhoun A, Curi R (1995) Human and rat tumour cells possess mitochondrial carnitine palmitoyltransferase I and II: effects of insulin. Biochem Mol Biol Int 37:599–605

    PubMed  CAS  Google Scholar 

  34. Colquhoun A, Curi R (1996) Immunodetection of rat Walker 256 tumour mitochondrial carnitine palmitoyltransferase I and II: evidence for the control of CPT II expression by insulin. Biochem Mol Biol Int 38:171–174

    PubMed  CAS  Google Scholar 

  35. Colquhoun A, Curi R (1997) Metabolic fate and effects of saturated and unsaturated fatty acids in Hep2 human larynx tumor cells. Biochem Mol Biol Int 41:597–607

    PubMed  CAS  Google Scholar 

  36. Colquhoun A (2002) Gamma-linolenic acid alters the composition of mitochondrial membrane subfractions, decreases outer mitochondrial membrane binding of hexokinase and alters carnitine palmitoyltransferase I properties in the Walker 256 rat tumour. Biochim Biophys Acta 1583(1):74–84

    PubMed  CAS  Google Scholar 

  37. Colquhoun A, de Mello FE, Curi R (1998) Regulation of tumour cell fatty acid oxidation by n-6 polyunsaturated fatty acids. Biochem Mol Biol Int 44(1):143–150

    PubMed  CAS  Google Scholar 

  38. Qiao L, Kozoni V, Tsioulias GJ, Koutsos MI, Hanif R, Shiff SJ, Rigas B (1995) Selected eicosanoids increase the proliferation rate of human colon carcinoma cell lines and mouse colonocytes in vivo. Biochim Biophys Acta 1258(2):215–223

    PubMed  Google Scholar 

  39. Chen ZY, Istfan NW (2000) Docosahexaenoic acid is a potent inducer of apoptosis in HT29 colon cancer cells. Prostaglandins Leukot Essent Fat Acids 63(5):301–308

    CAS  Google Scholar 

  40. Colquhoun A, Ramos KL, Schumacher RI (2001) Eicosapentaenoic acid and docosahexaenoic acid effects on tumour mitochondrial metabolism, acyl CoA metabolism and cell proliferation. Cell Biochem Func 19:97–105

    CAS  Google Scholar 

  41. Bustamante E, Pedersen PL (1977) High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase. Proc Natl Acad Sci U S A 74(9):3735–3739

    PubMed  CAS  Google Scholar 

  42. Pedersen PL (2007) Warburg, me and Hexokinase 2: multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen. J Bioenerg Biomembr 39(3):211–222

    PubMed  CAS  Google Scholar 

  43. Mathupala SP, Ko YH, Pedersen PL (2008) Hexokinase-2 bound to mitochondria: cancer’s stygian link to the “Warburg Effect” and a pivotal target for effective therapy. Semin Cancer Biol 19(1):17–24

    PubMed  Google Scholar 

  44. Stewart JM, Blakely JA (2000) Long chain fatty acids inhibit and medium chain fatty acids activate mammalian cardiac hexokinase. BiochemBiophys Acta 1484:278–286

    PubMed  CAS  Google Scholar 

  45. Arzoine L, Zilberberg N, Ben-Romano R, Shoshan-Barmatz V (2009) Voltage-dependent anion channel 1-based peptides interact with hexokinase to prevent its anti-apoptotic activity. J Biol Chem 284(6):3946–3955

    PubMed  CAS  Google Scholar 

  46. Brooks Robey R, Hay N (2009) Is Akt the “Warburg kinase”—Akt-energy interactions and oncogenesis. Semin Cancer Biol 19(1):25–31

    PubMed  Google Scholar 

  47. Kumarswamy R, Chandna S (2009) Putative partners in Bax mediated cytochrome-c release: ANT, CypD, VDAC or none of them? Mitochondrion 9:1–8

    PubMed  CAS  Google Scholar 

  48. Colquhoun A, Schumacher RI (2001) Modifications in mitochondrial metabolism and ultrastructure and their relationship to tumour growth inhibition by gamma-linolenic acid. Mol Cell Biochem 218(1–2):13–20

    PubMed  CAS  Google Scholar 

  49. Colquhoun A, Schumacher RI (2001) gamma-Linolenic acid and eicosapentaenoic acid induce modifications in mitochondrial metabolism, reactive oxygen species generation, lipid peroxidation and apoptosis in Walker 256 rat carcinosarcoma cells. Biochim Biophys Acta 1533(3):207–219

    PubMed  CAS  Google Scholar 

  50. Bartrons R, Caro J (2007) Hypoxia, glucose metabolism and the Warburg’s effect. J Bioenerg Biomembr 39(3):223–229

    PubMed  CAS  Google Scholar 

  51. Gogvadze V, Orrenius S, Zhivotovsky B (2009) Mitochondria as targets for chemotherapy. Apoptosis 14:624–640

    PubMed  CAS  Google Scholar 

  52. Gogvadze V, Orrenius S, Zhivotovsky B (2009) Mitochondria as targets for cancer chemotherapy. Semin Cancer Biol 19(1):57–66

    PubMed  CAS  Google Scholar 

  53. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12(5):913–922

    PubMed  CAS  Google Scholar 

  54. Cocco T, Di Paola M, Papa S, Lorusso M (1999) Arachidonic acid interaction with the mitochondrial electron transport chain promotes reactive oxygen species generation. Free Radic Biol Med 27(1–2):51–59

    PubMed  CAS  Google Scholar 

  55. Colquhoun A (2009) Mechanisms of action of eicosapentaenoic acid in bladder cancer cells in vitro: alterations in mitochondrial metabolism, reactive oxygen species generation and apoptosis induction. J Urol 181(4):1885–1893

    PubMed  CAS  Google Scholar 

  56. Kantrow SP, Tatro LG, Piantadosi CA (2000) Oxidative stress and adenine nucleotide control of mitochondrial permeability transition. Free Radic Biol Med 28(2):251–260

    PubMed  CAS  Google Scholar 

  57. Gendron MC, Schrantz N, Métivier D, Kroemer G, Maciorowska Z, Sureau F, Koester S, Petit PX (2001) Oxidation of pyridine nucleotides during Fas- and ceramide-induced apoptosis in Jurkat cells: correlation with changes in mitochondria, glutathione depletion, intracellular acidification and caspase 3 activation. Biochem J 353(Pt 2):357–367

    PubMed  CAS  Google Scholar 

  58. Cao Y, Pearman AT, Zimmerman GA, McIntyre TM, Prescott SM (2000) Intracellular unesterified arachidonic acid signals apoptosis. Proc Natl Acad Sci U S A 97(21):11280–11285

    PubMed  CAS  Google Scholar 

  59. Neuzil J, Dyason JC, Freeman R, Dong LF, Prochazka L, Wang XF, Scheffler I (2007) Ralph SJ Mitocans as anti-cancer agents targeting mitochondria: lessons from studies with vitamin E analogues, inhibitors of complex II. J Bioenerg Biomembr 39(1):65–72

    PubMed  CAS  Google Scholar 

  60. Jones RG, Thompson CB (2009) Tumor suppressor and cell metabolism: a recipe for cancer growth. Genes Dev 23:537–548

    PubMed  CAS  Google Scholar 

  61. Watkins SM, Carter LC, German JB (1998) Docosahexaenoic acid accumulates in cardiolipin and enhances HT-29 cell oxidant production. J Lipid Res 39(8):1583–1588

    PubMed  CAS  Google Scholar 

  62. Gonzalez B, Iturralde M, Alava MA, Anel A, Piñeiro A (2000) Metabolism of n -9, n -6 and n -3 fatty acids in hepatoma Morris 7777 cells. Preferential accumulation of linoleic acid in cardiolipin. Prostaglandins Leukot Essent Fat Acids 62(5):299–306

    CAS  Google Scholar 

  63. Nomura K, Imai H, Koumura T, Kobayashi T, Nakagawa Y (2000) Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis. Biochem J 351(Pt 1):183–193

    PubMed  CAS  Google Scholar 

  64. Brdiczka D (1991) Contact sites between mitochondrial envelope membranes. Structure and function in energy- and protein-transfer. Biochim Biophys Acta 1071(3):291–312

    PubMed  CAS  Google Scholar 

  65. Jacob WA, Bakker A, Hertsens RC, Biermans W (1994) Mitochondrial matrix granules: their behavior during changing metabolic situations and their relationship to contact sites between inner and outer mitochondrial membranes. Microsc Res Tech 27(4):307–318

    PubMed  CAS  Google Scholar 

  66. Denis-Pouxviel C, Riesinger I, Bühler C, Brdiczka D, Murat JC (1987) Regulation of mitochondrial hexokinase in cultured HT 29 human cancer cells. Na ultrastructural and biochemical study. Biochim Biophys Acta 902(3):335–348

    PubMed  CAS  Google Scholar 

  67. Kryvi H, Aarsland A, Berge RK (1990) Morphologic effects of sulfur-substituted fatty acids on rat hepatocytes with special reference to proliferation of peroxisomes and mitochondria. J Struct Biol 103(3):257–265

    PubMed  CAS  Google Scholar 

  68. Fraser F, Zammit VA (1998) Enrichment of carnitine palmitoyltransferases I and II in the contact sites of rat liver mitochondria. Biochem J 329(Pt 2):225–229

    PubMed  CAS  Google Scholar 

  69. Fraser F, Padovese R, Zammit VA (2001) Distinct kinetics of carnitine palmitoyltransferase I in contact sites and outer membranes of rat liver mitochondria. J Biol Chem 276(23):20182–20185

    PubMed  CAS  Google Scholar 

  70. Hoppel CL, Kerner J, Turkaly P, Tandler B (2001) Distinct kinetics of carnitine palmitoyltransferase I in contact sites and outer membranes of rat liver mitochondria. Arch Biochem Biophys 392:321–325

    PubMed  CAS  Google Scholar 

  71. Seegers JC, de Kock M, Lottering ML, Grobler CJ, van Papendorp DH, Shou Y, Habbersett R, Lehnert BE (1997) Effects of gamma-linolenic acid and arachidonic acid on cell cycle progression and apoptosis induction in normal and transformed cells. Prostaglandins Leukot Essent Fat Acids 56(4):271–280

    CAS  Google Scholar 

  72. Seegers JC, Lottering ML, Panzer A, Bianchi P, Stark JH (1998) Comparative anti-mitotic effects of lithium gamma-linolenate, gamma-linolenic acid and arachidonic acid, on transformed and embryonic cells. Prostaglandins Leukot Essent Fat Acids 59(4):285–291

    CAS  Google Scholar 

  73. de Kock M, Lottering ML, Grobler CJ, Viljoen TC, le Roux M, Seegers JC (1996) The induction of apoptosis in human cervical carcinoma (HeLa) cells by gamma-linolenic acid. Prostaglandins Leukot Essent Fat Acids 55(6):403–411

    Google Scholar 

  74. Siddiqui RA, Jenski LJ, Neff K, Harvey K, Kovacs RJ, Stillwell W, Siddiqui EA (2001) Docosahexaenoic acid induces apoptosis in Jurkat cells by a protein phosphatase-mediated process. Biochim Biophys Acta 1499(3):265–275

    PubMed  CAS  Google Scholar 

  75. Siddiqui RA, Jenski LJ, Harvey KA, Wiesehan JD, Stillwell W, Zaloga GP (2003) Cell-cycle arrest in Jurkat leukaemic cells: a possible role for docosahexaenoic acid. Biochem J 371(Pt 2):621–629

    PubMed  CAS  Google Scholar 

  76. Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N (2001) Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev 15(11):1406–1418

    PubMed  CAS  Google Scholar 

  77. Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341(Pt 2):233–249

    PubMed  CAS  Google Scholar 

  78. Desagher S, Martinou JC (2000) Mitochondria as the central control point of apoptosis. Trends Cell Biol 10(9):369–377

    PubMed  CAS  Google Scholar 

  79. Lena A, Rechichi M, Salvetti A, Bartoli B, Vecchio D, Scarcelli V, Amoroso R, Benvenuti L, Gagliardi R, Gremigni V, Rossi L (2009) Drugs targeting the mitochondrial pore act as citotoxic and cytostatic agents in temozolomide-resistant glioma cells. J Transl Med 7:13

    PubMed  Google Scholar 

  80. Nogueira V, Park Y, Chen CC, Xu PZ, Chen ML, Tonic I, Unterman T, Hay N (2008) Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell 14(6):458–470

    PubMed  CAS  Google Scholar 

  81. Paumen MB, Ishida Y, Muramatsu M, Yamamoto M, Honjo T (1997) Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitate-induced apoptosis. J Biol Chem 272(6):3324–3329

    PubMed  CAS  Google Scholar 

  82. Paumen MB, Ishida Y, Han H, Muramatsu M, Eguchi Y, Tsujimoto Y, Honjo T (1997) Direct interaction of the mitochondrial membrane protein carnitine palmitoyltransferase I with Bcl-2. Biochem Biophys Res Commun 231(3):523–525

    PubMed  CAS  Google Scholar 

  83. Sparagna GC, Hickson-Bick DL, Buja LM, McMillin JB (2000) A metabolic role for mitochondria in palmitate-induced cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol 279(5):H2124–H2132

    PubMed  CAS  Google Scholar 

  84. Colquhoun A (1998) Induction of apoptosis by polyunsaturated fatty acids and its relationship to fatty acid inhibition of carnitine palmitoyltransferase I activity in Hep2 cells. Biochem Mol Biol Int 45(2):331–336

    PubMed  CAS  Google Scholar 

  85. Gonzalvez F, Gottlieb E (2007) Cardiolipin: setting the beat of apoptosis. Apotosis 12:877–885

    CAS  Google Scholar 

  86. Mynatt RL, Greenhaw JJ, Cook GA (1994) Cholate extracts of mitochondrial outer membranes increase inhibition by malonyl-CoA of carnitine palmitoyltransferase-I by a mechanism involving phospholipids. Biochem J 299(Pt 3):761–767

    PubMed  CAS  Google Scholar 

  87. Serini S, Piccioni E, Merendino N, Calviello G (2009) Dietary polyunsaturated fatty acids as inducers of apoptosis: implications for cancer. Apoptosis 14(2):135–152

    PubMed  CAS  Google Scholar 

  88. Liepkalns VA, Icard-Liepkalns C, Cornwell DG (1982) Regulation of cell division in a human glioma cell clone by arachidonic acid and alpha-tocopherolquinone. Cancer Lett 15(2):173–178

    PubMed  CAS  Google Scholar 

  89. Williams JR, Leaver HA, Ironside JW, Miller EP, Whittle IR, Gregor A (1998) Apoptosis in human primary brain tumours: actions of arachidonic acid. Prostaglandins Leukot Essent Fat Acids 58(3):193–200

    CAS  Google Scholar 

  90. Martin DD, Robbins ME, Spector AA, Wen BC, Hussey DH (1996) The fatty acid composition of human gliomas differs from that found in nonmalignant brain tissue. Lipids 31(12):1283–1288

    PubMed  CAS  Google Scholar 

  91. Kokoglu E, Tüter Y, Yazici Z, Sandikci KS, Sönmez H, Ulakoğlu EZ, Ozyurt E (1998) Profiles of the fatty acids in the plasma membrane of human brain tumors. Cancer Biochem Biophys 16(4):301–312

    PubMed  CAS  Google Scholar 

  92. Leaver HA, Williams JR, Ironside JW, Miller EP, Gregor A, Su BH, Prescott RJ, Whittle IR (1999) Dynamics of reactive oxygen intermediate production in human glioma: n-6 essential fatty acid effects. Eur J Clin Invest 29(3):220–231, Comment in: Eur J Clin Invest 1999 Mar; 29(3):185-8

    PubMed  CAS  Google Scholar 

  93. Leaver HA, Williams JR, Smith C, Whittle IR (2004) Intracellular oxidation by human glioma cell populations: effect of arachidonic acid. Prostaglandins Leukot Essent Fat Acids 70(5):449–453

    CAS  Google Scholar 

  94. Naidu MR, Das UN, Kishan A (1992) Intratumoral gamma-linoleic acid therapy of human gliomas. Prostaglandins Leukot Essent Fat Acids 45(3):181–184

    CAS  Google Scholar 

  95. Das UN, Prasad VV, Reddy DR (1995) Local application of gamma-linolenic acid in the treatment of human gliomas. Cancer Lett 94(2):147–155

    PubMed  CAS  Google Scholar 

  96. Bakshi A, Mukherjee D, Bakshi A, Banerji AK, Das UN (2003) Gamma-linolenic acid therapy of human gliomas. Nutrition 19(4):305–309, Comment on: Nutrition. 2003 Apr; 19(4):386-8

    PubMed  CAS  Google Scholar 

  97. Das UN (2004) From bench to the clinic: gamma-linolenic acid therapy of human gliomas. Prostaglandins Leukot Essent Fat Acids 70(6):539–552

    CAS  Google Scholar 

  98. Das UN (2007) Gamma-linolenic acid therapy of human glioma-a review of in vitro, in vivo, and clinical studies. Med Sci Monit 13(7):RA119–RA131

    PubMed  CAS  Google Scholar 

  99. Bell HS, Wharton SB, Leaver HA, Whittle IR (1999) Effects of N-6 essential fatty acids on glioma invasion and growth: experimental studies with glioma spheroids in collagen gels. J Neurosurg 91(6):989–996

    PubMed  CAS  Google Scholar 

  100. Ramos KL, Colquhoun A (2003) Protective role of glucose-6-phosphate dehydrogenase activity in the metabolic response of C6 rat glioma cells to polyunsaturated fatty acid exposure. Glia 43(2):149–166

    PubMed  Google Scholar 

  101. Farin A, Suzuki SO, Weiker M, Goldman JE, Bruce JN, Canoll P (2006) Transplanted glioma cells migrate and proliferate on host brain vasculature: a dynamic analysis. Glia 53(8):799–808

    PubMed  Google Scholar 

  102. Benadiba M, Miyake JA, Colquhoun A (2009) Gamma-linolenic acid alters Ku80, E2F1, and bax expression and induces micronucleus formation in C6 glioma cells in vitro. IUBMB Life 61(3):244–251

    PubMed  CAS  Google Scholar 

  103. Chen ZY, Istfan NW (2001) Docosahexaenoic acid, a major constituent of fish oil diets, prevents activation of cyclin-dependent kinases and S-phase entry by serum stimulation in HT29 cells. Prostaglandins Leukot Essent Fat Acids 64(1):67–73

    CAS  Google Scholar 

  104. Kim R, Emi M, Tanabe K (2005) Role of mitochondria as the gardens of cell death. Cancer Chemother Pharmacol 57(5):545–553

    PubMed  Google Scholar 

  105. Susnow N, Zeng L, Margineantu D, Hockenbery DM (2009) Bcl-2 family proteins as regulators of oxidative stress. Semin Cancer Biol 19(1):42–49

    PubMed  CAS  Google Scholar 

  106. Subramanian C, Opipari AW Jr, Bian X, Castle VP, Kwok RP (2005) Ku70 acetylation mediates neuroblastoma cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci U S A 102:4842–4847

    PubMed  CAS  Google Scholar 

  107. Gullo C, Au M, Feng G, Teoh G (2006) The biology of Ku and its potential oncogenic role in cancer. Biochim Biophys Acta 1765:223–234

    PubMed  CAS  Google Scholar 

  108. Pedley J, Pettit A, Parsons PG (1998) Inhibition of Ku autoantigen binding activity to the E2F motif after ultraviolet B irradiation of melanocytic cells. Melanoma Res 8(6):471–481

    PubMed  CAS  Google Scholar 

  109. Park SJ, Ciccone SL, Freie B, Kurimasa A, Chen DJ, Li GC, Clapp DW, Lee SH (2004) A positive role for the Ku complex in DNA replication following strand break damage in mammals. J Biol Chem 279(7):6046–6055

    PubMed  CAS  Google Scholar 

  110. Song JY, Lim JW, Kim H, Kim KH (2003) Role of NF-kappaB and DNA repair protein Ku on apoptosis in pancreatic acinar cells. Ann N Y Acad Sci 1010:259–263

    PubMed  CAS  Google Scholar 

  111. Rampakakis E, Di Paola D, Zannis-Hadjopoulos M (2008) Ku is involved in cell growth, DNA replication and G1-S transition. J Cell Sci 121(Pt 5):590–600

    PubMed  CAS  Google Scholar 

  112. Yang QS, Gu JL, DU LQ, Jia LL, Qin LL, Wang Y, Fan FY (2008) ShRNA-mediated Ku80 gene silencing inhibits cell proliferation and sensitizes to gamma-radiation and mitomycin c-induced apoptosis in esophageal squamous cell carcinoma lines. J Radiat Res (Tokyo). 2008 Apr 9

  113. Groesser T, Chun E, Rydberg B (2007) Relative biological effectiveness of high-energy iron ions for micronucleus formation at low doses. Radiat Res 168(6):675–682

    PubMed  CAS  Google Scholar 

  114. Zhang F, Zhang T, Gu ZP, Zhou YA, Han Y, Li XF, Wang XP, Cheng QS, Mei QB (2008) Enhancement of radiosensitivity by roscovitine pretreatment in human non-small cell lung cancer A549 cells. J Radiat Res (Tokyo) 49(5):541–548

    CAS  Google Scholar 

  115. Kinsella JE, Black JM (1993) Effects of polyunsaturated fatty acids on the efficacy of antineoplastic agents toward L5178Y lymphoma cells. Biochem Pharmacol 45(9):1881–1887

    PubMed  CAS  Google Scholar 

  116. Vartak S, Robbins ME, Spector AA (1997) Polyunsaturated fatty acids increase the sensitivity of 36B10 rat astrocytoma cells to radiation-induced cell kill. Lipids 32(3):283–292

    PubMed  CAS  Google Scholar 

  117. Germain E, Chajès V, Cognault S, Lhuillery C, Bougnoux P (1998) Enhancement of doxorubicin cytotoxicity by polyunsaturated fatty acids in the human breast tumor cell line MDA-MB-231: relationship to lipid peroxidation. Int J Cancer 75(4):578–583

    PubMed  CAS  Google Scholar 

  118. Madhavi N, Das UN (1994) Effect of n-6 and n-3 fatty acids on the survival of vincristine sensitive and resistant human cervical carcinoma cells in vitro. Cancer Lett 84(1):31–41

    PubMed  CAS  Google Scholar 

  119. Kenny FS, Pinder SE, Ellis IO, Gee JM, Nicholson RI, Bryce RP, Robertson JF (2000) Gamma linolenic acid with tamoxifen as primary therapy in breast cancer. Int J Cancer 85(5):643–648

    PubMed  CAS  Google Scholar 

  120. Das UN, Madhavi N, Sravan Kumar G, Padma M, Sangeetha P (1998) Can tumour cell drug resistance be reversed by essential fatty acids and their metabolites? Prostaglandins Leukot Essent Fat Acids 58(1):39–54

    CAS  Google Scholar 

  121. Leaver HA, Bell HS, Rizzo MT, Ironside JW, Gregor A, Wharton SB, Whittle IR (2002) Antitumour and pro-apoptotic actions of highly unsaturated fatty acids in glioma. Prostaglandins Leukot Essent Fat Acids 66(1):19–29

    CAS  Google Scholar 

  122. Godinot C, de Laplanche E, Hervouet E, Simonnet H (2007) Actuality of Warburg’s views in our understanding of renal cancer metabolism. J Bioenerg Biomembr 39(3):235–241

    PubMed  CAS  Google Scholar 

  123. Leaver HA, Wharton SB, Bell HS, Leaver-Yap IM, Whittle IR (2002) Highly unsaturated fatty acid induced tumour regression in glioma pharmacodynamics and bioavailability of gamma linolenic acid in an implantation glioma model: effects on tumour biomass, apoptosis and neuronal tissue histology. Prostaglandins Leukot Essent Fat Acids 67(5):283–292

    CAS  Google Scholar 

  124. Miyake JA, Benadiba M, Colquhoun A (2009) Gamma-linolenic acid inhibits both tumour cell cycle progression and angiogenesis in the orthotopic C6 glioma model through changes in VEGF, Flt1, ERK1/2, MMP2, cyclin D1, pRb, p53 and p27 protein expression. Lipids Health Dis 8:8

    PubMed  Google Scholar 

  125. Ma W, Sung HJ, Park JY, Matoba S, Hwang PM (2007) A pivotal role for p53: balancing aerobic respiration and glycolysis. J Bioenerg Biomembr 39(3):243–246

    PubMed  CAS  Google Scholar 

  126. Frezza C, Gottlieb E (2009) Mitochondria in cancer: not just innocent bystanders. Semin Cancer Biol 19(1):4–11

    PubMed  CAS  Google Scholar 

  127. Olovnikov IA, Kravchenko JE, Chumakov PM (2009) Homeostatic functions of metabolism and antioxidant defense. Semin Cancer Biol 19(1):32–41

    PubMed  CAS  Google Scholar 

  128. Khan NA, Nishimura K, Aires V, Yamashita T, Oaxaca-Castillo D, Kashigawa K, Igarashi K (2006) Docosahexaenoic acid inhibits cancer cell growth via p27Kip1, CDK2, ERK1/ERK2, and retinoblastoma phosphorylation. J Lipid Res 47(10):2306–2313

    PubMed  CAS  Google Scholar 

  129. Schley PD, Jijon HB, Robinson LE, Field CJ (2005) Mechanisms of omega-3 fatty acid-induced growth inhibition in MDA-MB-231 human breast cancer cells. Breast Cancer Res Treat 92:187–195

    PubMed  CAS  Google Scholar 

  130. Calviello G, Palozza P, Piccioni E, Maggiano N, Frattucci A, Franceschelli P, Bartoli GM (1998) Dietary supplementation with eicosapentaenoic and docosahexaenoic acid inhibits growth of Morris hepatocarcinoma 3924A in rats: effects on proliferation and apoptosis. Int J Cancer 75(5):699–705

    PubMed  CAS  Google Scholar 

  131. Cai J, Jiang WG, Mansel RE (1999) Inhibition of the expression of VE-cadherin/catenin complex by gamma linolenic acid in human vascular endothelial cells, and its impact on angiogenesis. Biochem Biophys Res Commun 258(1):113–8, 29

    PubMed  CAS  Google Scholar 

  132. Jiang WG, Bryce RP, Horrobin DF (1998) Essential fatty acids: molecular and cellular basis of their anti-cancer action and clinical implications. Crit Rev Oncol Hematol 27(3):179–209

    PubMed  CAS  Google Scholar 

  133. Yamagata K, Tagami M, Takenaga F, Yamori Y, Nara Y, Itoh S (2003) Fatty acids induce tight junctions to form in brain capillary endothelial cells. Neuroscience 116:649–656

    PubMed  CAS  Google Scholar 

  134. Schiazza L, Lamari F, Foglietti MJ, Hainque B, Bernard M, Beaudeux JL (2008) Métabolisme énergétique cellulaire du tissue cérébral: spécificités métaboliques des tumeurs gliales. Ann Biol Clin 66(2):131–141

    Google Scholar 

  135. Pilkington GJ, Parker K, Murray SA (2008) Approaches to mitochondrially mediated cancer therapy. Sem Cancer Biol 18:226–235

    CAS  Google Scholar 

  136. Auestad N, Korsak RA, Morrow JW, Edmond J (1991) Fatty acid oxidation and ketogenesis by astrocytes in primary culture. J Neurochem 56(4):1376–1386

    PubMed  CAS  Google Scholar 

  137. Blázquez C, Sánchez C, Velasco G, Guzmán M (1998) Role of carnitine palmitoyltransferase I in the control of ketogenesis in primary cultures of rat astrocytes. J Neurochem 71(4):1597–1606

    Article  PubMed  Google Scholar 

  138. Blázquez C, Woods A, de Ceballos ML, Carling D, Guzmán M (1999) The AMP-activated protein kinase is involved in the regulation of ketone body production by astrocytes. J Neurochem 73(4):1674–1682

    PubMed  Google Scholar 

  139. Blázquez C, Sánchez C, Daza A, Galve-Roperh I, Guzmán M (1999) The stimulation of ketogenesis by cannabinoids in cultured astrocytes defines carnitine palmitoyltransferase I as a new ceramide-activated enzyme. J Neurochem 72(4):1759–1768

    PubMed  Google Scholar 

  140. Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27(2):219–249, Epub 2006 Jul 12

    PubMed  CAS  Google Scholar 

  141. Oudard S, Miccoli L, Beurdeley-Thomas A, Dutrillaux B, Poupon MF (2004) Homophilic anchorage of brain-hexokinase to mitochondria-porins revealed by specific-peptide antibody cross recognition. Bull Cancer 91(6):E184–E200

    PubMed  Google Scholar 

  142. Abu-Hamad S, Zaid H, Israelson A, Nahon E, Shoshan-Barmatz V (2008) Hexokinase-I protection against apoptotic cell death is mediated via interaction with the voltage-dependent anion channel-1: mapping the site of binding. J Biol Chem 283(19):13482–13490

    PubMed  CAS  Google Scholar 

  143. Lewandrowski U, Sickmann A, Cesaro L, Brunati AM, Toninello A, Salvi M (2008) Identification of new tyrosine phosphorylated proteins in rat brain mitochondria. FEBS Lett 582(7):1104–1110

    PubMed  CAS  Google Scholar 

  144. Jou MJ (2008) Pathophysiological and pharmacological implications of mitochondria-targeted reactive oxygen species generation in astrocytes. Adv Drug Deliv Rev 60(13-14):1512–1526

    PubMed  CAS  Google Scholar 

  145. Hamm-Alvarez S, Cadenas E (2008) Mitochondrial medicine and mitochondrion-based therapeutics. Adv Drug Deliv Rev 60(13-14):1437–1438

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison Colquhoun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colquhoun, A. Lipids, Mitochondria and Cell Death: Implications in Neuro-oncology. Mol Neurobiol 42, 76–88 (2010). https://doi.org/10.1007/s12035-010-8134-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-010-8134-4

Keyword

Navigation