Skip to main content

Advertisement

Log in

Post-MPTP Treatment with Granulocyte Colony-Stimulating Factor Improves Nigrostriatal Function in the Mouse Model of Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The neuroprotective effects of granulocyte colony-stimulating factor (G-CSF) were reported in several neurological disease models, including Parkinson’s disease (PD). In the present study, we investigated the therapeutic effect of G-CSF after the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD was established. G-CSF was subcutaneously administered into C57BL/6 mice that had undergone systemic MPTP injections. We found that G-CSF treatment markedly increased the number of dopaminergic neurons in the substantia nigra pars compacta (SNpc) of the G-CSF-treated group. Consistent with this finding, we found a significant increase in dopamine release under high K+ stimulation in the striatum of the G-CSF-treated animals compared to the MPTP-exposed mice. Finally, we observed a persistent recovery of locomotor function in the G-CSF-treated animals. These results suggest the potential therapeutic value of G-CSF in treating PD. However, our bromodeoxyuridine labeling experiment failed to identify any newly generated dopaminergic neurons in SNpc. This might indicate an indirect effect of G-CSF on cell proliferation. The underlying mechanism of G-CSF is under further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BrdU:

Bromodeoxyuridine

DCX:

Doublecortin

G-CSF:

Granulocyte colony-stimulating factor

G-CSFR:

G-CSF receptor

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

NSC:

Neural stem cell

PCNA:

Proliferating cell nuclear antigen

PD:

Parkinson’s disease

PFA:

Paraformaldehyde

SGZ:

Subgranular zone

SNpc:

Substantia nigra pars compacta

SVZ:

Subventricular zone

TH:

Tyrosine hydroxylase

References

  1. Rascol O, Payoux P, Ory F, Ferreira JJ, Brefel-Courbon C, Montastruc JL (2003) Limitations of current Parkinson’s disease therapy. Ann Neurol 53:S3–S15

    Article  CAS  PubMed  Google Scholar 

  2. Demetri GD, Griffin JD (1991) Granulocyte colony-stimulating factor and its receptor. Blood 78:2791–2808

    CAS  PubMed  Google Scholar 

  3. Schneider A, Kruger C, Steigleder T, Weber D, Pitzer C, Laage R, Aronowski J, Maurer MH, Gassler N, Mier W, Hasselblatt M, Kollmar R, Schwab S, Sommer C, Bach A, Kuhn HG, Schabitz WR (2005) The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J Clin Invest 115:2083–2098

    Article  CAS  PubMed  Google Scholar 

  4. Schneider A, Kuhn HG, Schabitz WR (2005) A role for G-CSF (granulocyte-colony stimulating factor) in the central nervous system. Cell Cycle 4:1753–1757

    CAS  PubMed  Google Scholar 

  5. Komine-Kobayashi M, Zhang N, Liu M, Tanaka R, Hara H, Osaka A, Mochizuki H, Mizuno Y, Urabe T (2006) Neuroprotective effect of recombinant human granulocyte colony-stimulating factor in transient focal ischemia of mice. J Cereb Blood Flow Metab 26:402–413

    Article  CAS  PubMed  Google Scholar 

  6. Schabitz WR, Kollmar R, Schwaninger M, Juettler E, Bardutzky J, Scholzke MN, Sommer C, Schwab S (2003) Neuroprotective effect of granulocyte colony-stimulating factor after focal cerebral ischemia. Stroke 34:745–751

    Article  PubMed  Google Scholar 

  7. Cao XQ, Arai H, Ren YR, Oizumi H, Zhang N, Seike S, Furuya T, Yasuda T, Mizuno Y, Mochizuki H (2006) Recombinant human granulocyte colony-stimulating factor protects against MPTP-induced dopaminergic cell death in mice by altering Bcl-2/Bax expression levels. J Neurochem 99:861–867

    Article  CAS  PubMed  Google Scholar 

  8. Meuer K, Pitzer C, Teismann P, Kruger C, Goricke B, Laage R, Lingor P, Peters K, Schlachetzki JC, Kobayashi K, Dietz GP, Weber D, Ferger B, Schabitz WR, Bach A, Schulz JB, Bahr M, Schneider A, Weishaupt JH (2006) Granulocyte-colony stimulating factor is neuroprotective in a model of Parkinson’s disease. J Neurochem 97:675–686

    Article  CAS  PubMed  Google Scholar 

  9. Lee ST, Park JE, Kim DH, Kim S, Im WS, Kang L, Jung SH, Kim MW, Chu K, Kim M (2008) Granulocyte-colony stimulating factor attenuates striatal degeneration with activating survival pathways in 3-nitropropionic acid model of Huntington’s disease. Brain Res 1194:130–137

    Article  CAS  PubMed  Google Scholar 

  10. Gibson CL, Philip MW, Murphy SP (2005) G-CSF reduces infarct volume and improves functional outcome after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab 25:431–439

    Article  CAS  PubMed  Google Scholar 

  11. Lu CZ, Xiao BG (2007) Neuroprotection of G-CSF in cerebral ischemia. Front Biosci 12:2869–2875

    Article  CAS  PubMed  Google Scholar 

  12. Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250

    Article  CAS  PubMed  Google Scholar 

  13. Hoglinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, Caille I, Hirsch EC (2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 7:726–735

    Article  PubMed  Google Scholar 

  14. Liu B, Gao E, Zeng X, Ji M, Cai Q, Lu Q, Yang H, Xu Q (2006) Proliferation of neural precursors in the subventricular zone after chemical lesions of the nigrostriatal pathway in rat brain. Brain Res 1106:30–39

    Article  CAS  PubMed  Google Scholar 

  15. Yoshimi K, Ren YR, Seki T, Yamada M, Ooizumi H, Onodera M, Saito Y, Murayama S, Okano H, Mizuno Y (2005) Possibility for neurogenesis in substantia nigra of parkinsonian brain. Ann Neurol 58:31–40

    Article  PubMed  Google Scholar 

  16. Jordan JD, Ming GL, Song H (2006) Adult neurogenesis as a potential therapy for neurodegenerative diseases. Discov Med 6:144–147

    PubMed  Google Scholar 

  17. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660

    Article  CAS  PubMed  Google Scholar 

  18. Jackson-Lewis V, Przedborski S (2007) Protocol for the MPTP mouse model of Parkinson’s disease. Nat Protoc 2:141–151

    Article  CAS  PubMed  Google Scholar 

  19. Huang HY, Lin SZ, Kuo JS, Chen WF, Wang MJ (2007) G-CSF protects dopaminergic neurons from 6-OHDA-induced toxicity via the ERK pathway. Neurobiol Aging 28:1258–1269

    Article  CAS  PubMed  Google Scholar 

  20. Shan X, Chi L, Bishop M, Luo C, Lien L, Zhang Z, Liu R (2006) Enhanced de novo neurogenesis and dopaminergic neurogenesis in the substantia nigra of MPTP-induced Parkinson’s disease-like mice. Stem Cells 24:1280–1287

    Article  CAS  PubMed  Google Scholar 

  21. Zhao M, Momma S, Delfani K, Carlen M, Cassidy RM, Johansson CB, Brismar H, Shupliakov O, Frisen J, Janson AM (2003) Evidence for neurogenesis in the adult mammalian substantia nigra. Proc Natl Acad Sci U S A 100:7925–7930

    Article  CAS  PubMed  Google Scholar 

  22. Frielingsdorf H, Schwarz K, Brundin P, Mohapel P (2004) No evidence for new dopaminergic neurons in the adult mammalian substantia nigra. Proc Natl Acad Sci U S A 101:10177–10182

    Article  CAS  PubMed  Google Scholar 

  23. Mao L, Lau YS, Petroske E, Wang JQ (2001) Profound astrogenesis in the striatum of adult mice following nigrostriatal dopaminergic lesion by repeated MPTP administration. Brain Res Dev Brain Res 131:57–65

    Article  CAS  PubMed  Google Scholar 

  24. Lie DC, Dziewczapolski G, Willhoite AR, Kaspar BK, Shults CW, Gage FH (2002) The adult substantia nigra contains progenitor cells with neurogenic potential. J Neurosci 22:6639–6649

    CAS  PubMed  Google Scholar 

  25. Kay JN, Blum M (2000) Differential response of ventral midbrain and striatal progenitor cells to lesions of the nigrostriatal dopaminergic projection. Dev Neurosci 22:56–67

    Article  CAS  PubMed  Google Scholar 

  26. Horner PJ, Gage FH (2000) Regenerating the damaged central nervous system. Nature 407:963–970

    Article  CAS  PubMed  Google Scholar 

  27. Fallon J, Reid S, Kinyamu R, Opole I, Opole R, Baratta J, Korc M, Endo TL, Duong A, Nguyen G, Karkehabadhi M, Twardzik D, Patel S, Loughlin S (2000) In vivo induction of massive proliferation, directed migration, and differentiation of neural cells in the adult mammalian brain. Proc Natl Acad Sci U S A 97:14686–14691

    Article  CAS  PubMed  Google Scholar 

  28. Benraiss A, Chmielnicki E, Lerner K, Roh D, Goldman SA (2001) Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J Neurosci 21:6718–6731

    CAS  PubMed  Google Scholar 

  29. Sedelis M, Schwarting RKW, Huston JP (2001) Behavioral phenotyping of the MPTP mouse model of Parkinson’s disease. Behav Brain Res 125:109–125

    Article  CAS  PubMed  Google Scholar 

  30. Rousselet E, Joubert C, Callebert J, Parain K, Tremblay L, Orieux G, Launay JM, Cohen-Salmon C, Hirsch EC (2003) Behavioral changes are not directly related to striatal monoamine levels, number of nigral neurons, or dose of parkinsonian toxin MPTP in mice. Neurobiol Dis 14:218–228

    Article  CAS  PubMed  Google Scholar 

  31. Espejo EF, Minano J (2001) Adrenergic hyperactivity and metanephrine excess in the nucleus accumbens after prefrontocortical dopamine depletion. J Neurophysiol 85:1270–1274

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was partially supported by Charles E. Schmidt Family Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jang-Yen Wu, Dipnarine Maharaj or Jianning Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCollum, M., Ma, Z., Cohen, E. et al. Post-MPTP Treatment with Granulocyte Colony-Stimulating Factor Improves Nigrostriatal Function in the Mouse Model of Parkinson’s Disease. Mol Neurobiol 41, 410–419 (2010). https://doi.org/10.1007/s12035-010-8118-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-010-8118-4

Keyword

Navigation