Skip to main content
Log in

Multifaceted Role of Heat Shock Protein 70 in Neurons

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Heat shock protein 70 (Hsp70) plays important roles in neural protection from stress by assisting cellular protein folding. In this review we discuss the current understanding of inducible and constitutive Hsp70 in maintaining and protecting neuronal synaptic function under normal and stressed conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191

    Article  CAS  PubMed  Google Scholar 

  2. Pignataro L, Miller AN, Ma L, Midha S, Protiva P, Herrera DG, Harrison NL (2007) Alcohol regulates gene expression in neurons via activation of heat shock factor 1. J Neurosci 27:12957–12966

    Article  CAS  PubMed  Google Scholar 

  3. Sanchez-Moreno C, Paniagua M, Madrid A, Martin A (2003) Protective effect of vitamin C against the ethanol mediated toxic effects on human brain glial cells. J Nutr Biochem 14:606–613

    Article  CAS  PubMed  Google Scholar 

  4. Su CY, Chong KY, Owen OE, Dillmann WH, Chang C, Lai CC (1998) Constitutive and inducible hsp70s are involved in oxidative resistance evoked by heat shock or ethanol. J Mol Cell Cardiol 30:587–598

    Article  CAS  PubMed  Google Scholar 

  5. Leung TK, Rajendran MY, Monfries C, Hall C, Lim L (1990) The human heat-shock protein family. Expression of a novel heat-inducible HSP70 (HSP70B’) and isolation of its cDNA and genomic DNA. Biochem J 267:125–132

    CAS  PubMed  Google Scholar 

  6. Turner CP, Panter SS, Sharp FR (1999) Anti-oxidants prevent focal rat brain injury as assessed by induction of heat shock proteins (HSP70, HO-1/HSP32, HSP47) following subarachnoid injections of lysed blood. Brain Res Mol Brain Res 65:87–102

    Article  CAS  PubMed  Google Scholar 

  7. Wallen ES, Buettner GR, Moseley PL (1997) Oxidants differentially regulate the heat shock response. Int J Hyperthermia 13:517–524

    Article  CAS  PubMed  Google Scholar 

  8. Misra S, Zafarullah M, Price-Haughey J, Gedamu L (1989) Analysis of stress-induced gene expression in fish cell lines exposed to heavy meals and heat shock. Biochim Biophys Acta 1007:325–333

    CAS  PubMed  Google Scholar 

  9. Mutwakil MH, Reader JP, Holdich DM, Smithurst PR, Candido EPM, Jones D, Stringham EG, de Pomerai DI (1997) Use of stress-inducible transgenic nematodes as biomarkers of heavy metal pollution in water samples from an English river system. Arch Environ Contam Toxicol 32:146–153

    Article  CAS  PubMed  Google Scholar 

  10. Wagner M, Hermanns I, Bittinger F, Kirkpatrick CJ (1999) Induction of stress proteins in human endothelial cells by heavy metal ions and heat shock. Am J Physiol 277:L1026–L1033

    CAS  PubMed  Google Scholar 

  11. Nissim I, Hardy M, Pleasure J, Nissim I, States B (1992) A mechanism of glycine and alanine cytoprotective action: stimulation of stress-induced HSP70 mRNA. Kidney Int 42:775–782

    Article  CAS  PubMed  Google Scholar 

  12. Stephen DW, Jamieson DJ (1997) Amino acid-dependent regulation of the Saccharomyces cerevisiae GSH1 gene by hydrogen peroxide. Mol Microbiol 23:203–210

    Article  CAS  PubMed  Google Scholar 

  13. Fei G, Guo C, Sun HS, Feng ZP (2007) Chronic hypoxia stress-induced differential modulation of heat-shock protein 70 and presynaptic proteins. J Neurochem 100:50–61

    Article  CAS  PubMed  Google Scholar 

  14. Fei G, Guo C, Sun HS, Feng ZP (2008) HSP70 reduces chronic hypoxia-induced neural suppression via regulating expression of syntaxin. Adv Exp Med Biol 605:35–40

    Article  PubMed  Google Scholar 

  15. Bergeron M, Mivechi NF, Giaccia AJ, Giffard RG (1996) Mechanism of heat shock protein 72 induction in primary cultured astrocytes after oxygen-glucose deprivation. Neurol Res 18:64–72

    CAS  PubMed  Google Scholar 

  16. Xu L, Lee JE, Giffard RG (1999) Overexpression of bcl-2, bcl-XL or hsp70 in murine cortical astrocytes reduces injury of co-cultured neurons. Neurosci Lett 277:193–197

    Article  CAS  PubMed  Google Scholar 

  17. Benjamin IJ, McMillan DR (1998) Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circ Res 83:117–132

    CAS  PubMed  Google Scholar 

  18. Schlesinger MJ (1990) Heat shock proteins. J Biol Chem 265:12111–12114

    CAS  PubMed  Google Scholar 

  19. Walter S, Buchner J (2002) Molecular chaperones—cellular machines for protein folding. Angew Chem Int Ed Engl 41:1098–1113

    Article  CAS  PubMed  Google Scholar 

  20. Azad P, Zhou D, Russo E, Haddad GG (2009) Distinct mechanisms underlying tolerance to intermittent and constant hypoxia in Drosophila melanogaster. PLoS ONE 4:e5371

    Article  PubMed  Google Scholar 

  21. Zhang K, Zhao T, Huang X, Liu ZH, Xiong L, Li MM, Wu LY, Zhao YQ, Zhu LL, Fan M (2009) Preinduction of HSP70 promotes hypoxic tolerance and facilitates acclimatization to acute hypobaric hypoxia in mouse brain. Cell Stress Chaperones 14:407–415

    Article  CAS  PubMed  Google Scholar 

  22. Hinzpeter A, Lipecka J, Brouillard F, Baudoin-Legros M, Dadlez M, Edelman A, Fritsch J (2006) Association between Hsp90 and the ClC-2 chloride channel upregulates channel function. Am J Physiol Cell Physiol 290:C45–C56

    Article  CAS  PubMed  Google Scholar 

  23. Williamson CL, Dabkowski ER, Dillmann WH, Hollander JM (2008) Mitochondria protection from hypoxia/reoxygenation injury with mitochondria heat shock protein 70 overexpression. Am J Physiol Heart Circ Physiol 294:H249–H256

    Article  CAS  PubMed  Google Scholar 

  24. Chang W, Song BW, Lim S, Song H, Shim CY, Cha MJ, Ahn DH, Jung YG, Lee DH, Chung JH, Choi KD, Lee SK, Chung N, Lee SK, Jang Y, Hwang KC (2009) Mesenchymal stem cells pretreated with delivered Hph-1-Hsp70 protein are protected from hypoxia-mediated cell death and rescue heart functions from myocardial injury. Stem Cells 27:2283–2292

    Article  CAS  PubMed  Google Scholar 

  25. Klose MK, Atwood HL, Robertson RM (2008) Hyperthermic preconditioning of presynaptic calcium regulation in Drosophila. J Neurophysiol 99:2420–2430

    Article  CAS  PubMed  Google Scholar 

  26. Kang MJ, Jung SM, Kim MJ, Bae JH, Kim HB, Kim JY, Park SJ, Song HS, Kim DW, Kang CD, Kim SH (2008) DNA-dependent protein kinase is involved in heat shock protein-mediated accumulation of hypoxia-inducible factor-1alpha in hypoxic preconditioned HepG2 cells. FEBS J 275:5969–5981

    Article  CAS  PubMed  Google Scholar 

  27. Karunanithi S, Barclay JW, Robertson RM, Brown IR, Atwood HL (1999) Neuroprotection at Drosophila synapses conferred by prior heat shock. J Neurosci 19:4360–4369

    CAS  PubMed  Google Scholar 

  28. Lin YW, Yang HW, Min MY, Chiu TH (2004) Heat-shock pretreatment prevents suppression of long-term potentiation induced by scopolamine in rat hippocampal CA1 synapses. Brain Res 999:222–226

    Article  CAS  PubMed  Google Scholar 

  29. Obrenovitch TP (2008) Molecular physiology of preconditioning-induced brain tolerance to ischemia. Physiol Rev 88:211–247

    Article  CAS  PubMed  Google Scholar 

  30. Amin J, Ananthan J, Voellmy R (1988) Key features of heat shock regulatory elements. Mol Cell Biol 8:3761–3769

    CAS  PubMed  Google Scholar 

  31. Perisic O, Xiao H, Lis JT (1989) Stable binding of Drosophila heat shock factor to head-to-head and tail-to-tail repeats of a conserved 5 bp recognition unit. Cell 59:797–806

    Article  CAS  PubMed  Google Scholar 

  32. Peteranderl R, Nelson HC (1992) Trimerization of the heat shock transcription factor by a triple-stranded alpha-helical coiled-coil. Biochemistry 31:12272–12276

    Article  CAS  PubMed  Google Scholar 

  33. Ohtsuka K, Hata M (2000) Molecular chaperone function of mammalian Hsp70 and Hsp40—a review. Int J Hyperthermia 16:231–245

    Article  CAS  PubMed  Google Scholar 

  34. Williams GT, Morimoto RI (1990) Maximal stress-induced transcription from the human HSP70 promoter requires interactions with the basal promoter elements independent of rotational alignment. Mol Cell Biol 10:3125–3136

    CAS  PubMed  Google Scholar 

  35. Santoro MG (2000) Heat shock factors and the control of the stress response. Biochem Pharmacol 59:55–63

    Article  CAS  PubMed  Google Scholar 

  36. Flaherty KM, DeLuca-Flaherty C, McKay DB (1990) Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature 346:623–628

    Article  CAS  PubMed  Google Scholar 

  37. Scheufler C, Brinker A, Bourenkov G, Pegoraro S, Moroder L, Bartunik H, Hartl FU, Moarefi I (2000) Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70–Hsp90 multichaperone machine. Cell 101:199–210

    Article  CAS  PubMed  Google Scholar 

  38. Zhu X, Zhao X, Burkholder WF, Gragerov A, Ogata CM, Gottesman ME, Hendrickson WA (1996) Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272:1606–1614

    Article  CAS  PubMed  Google Scholar 

  39. Han W, Christen P (2003) Interdomain communication in the molecular chaperone DnaK. Biochem J 369:627–634

    Article  CAS  PubMed  Google Scholar 

  40. Brocchieri L, Conway dM, Macario AJ (2008) hsp70 genes in the human genome: conservation and differentiation patterns predict a wide array of overlapping and specialized functions. BMC Evol Biol 8:19

    Article  PubMed  Google Scholar 

  41. Tavaria M, Gabriele T, Kola I, Anderson RL (1996) A hitchhiker’s guide to the human Hsp70 family. Cell Stress Chaperones 1:23–28

    Article  CAS  PubMed  Google Scholar 

  42. Bhattacharyya T, Karnezis AN, Murphy SP, Hoang T, Freeman BC, Phillips B, Morimoto RI (1995) Cloning and subcellular localization of human mitochondrial hsp70. J Biol Chem 270:1705–1710

    Article  CAS  PubMed  Google Scholar 

  43. Domanico SZ, DeNagel DC, Dahlseid JN, Green JM, Pierce SK (1993) Cloning of the gene encoding peptide-binding protein 74 shows that it is a new member of the heat shock protein 70 family. Mol Cell Biol 13:3598–3610

    CAS  PubMed  Google Scholar 

  44. Munro S, Pelham HR (1986) An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46:291–300

    Article  CAS  PubMed  Google Scholar 

  45. Hendershot LM, Valentine VA, Lee AS, Morris SW, Shapiro DN (1994) Localization of the gene encoding human BiP/GRP78, the endoplasmic reticulum cognate of the HSP70 family, to chromosome 9q34. Genomics 20:281–284

    Article  CAS  PubMed  Google Scholar 

  46. Tavaria M, Gabriele T, Anderson RL, Mirault ME, Baker E, Sutherland G, Kola I (1995) Localization of the gene encoding the human heat shock cognate protein, HSP73, to chromosome 11. Genomics 29:266–268

    Article  CAS  PubMed  Google Scholar 

  47. Tononi G, Cirelli C (2001) Modulation of brain gene expression during sleep and wakefulness: a review of recent findings. Neuropsychopharmacology 25:S28–S35

    Article  CAS  PubMed  Google Scholar 

  48. Milner CM, Campbell RD (1990) Structure and expression of the three MHC-linked HSP70 genes. Immunogenetics 32:242–251

    Article  CAS  PubMed  Google Scholar 

  49. Wu B, Hunt C, Morimoto R (1985) Structure and expression of the human gene encoding major heat shock protein HSP70. Mol Cell Biol 5:330–341

    CAS  PubMed  Google Scholar 

  50. Goate AM, Cooper DN, Hall C, Leung TK, Solomon E, Lim L (1987) Localization of a human heat-shock HSP 70 gene sequence to chromosome 6 and detection of two other loci by somatic-cell hybrid and restriction fragment length polymorphism analysis. Hum Genet 75:123–128

    Article  CAS  PubMed  Google Scholar 

  51. Harrison GS, Drabkin HA, Kao FT, Hartz J, Hart IM, Chu EH, Wu BJ, Morimoto RI (1987) Chromosomal location of human genes encoding major heat-shock protein HSP70. Somat Cell Mol Genet 13:119–130

    Article  CAS  PubMed  Google Scholar 

  52. Sharma D, Masison DC (2009) Hsp70 structure, function, regulation and influence on yeast prions. Protein Pept Lett 16:571–581

    Article  CAS  PubMed  Google Scholar 

  53. Morano KA, Thiele DJ (1999) Heat shock factor function and regulation in response to cellular stress, growth, and differentiation signals. Gene Expr 7:271–282

    CAS  PubMed  Google Scholar 

  54. Cheetham ME, Caplan AJ (1998) Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones 3:28–36

    Article  CAS  PubMed  Google Scholar 

  55. Qiu XB, Shao YM, Miao S, Wang L (2006) The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol Life Sci 63:2560–2570

    Article  CAS  PubMed  Google Scholar 

  56. Fewell SW, Pipas JM, Brodsky JL (2002) Mutagenesis of a functional chimeric gene in yeast identifies mutations in the simian virus 40 large T antigen J domain. Proc Natl Acad Sci U S A 99:2002–2007

    Article  CAS  PubMed  Google Scholar 

  57. Feldheim D, Rothblatt J, Schekman R (1992) Topology and functional domains of Sec63p, an endoplasmic reticulum membrane protein required for secretory protein translocation. Mol Cell Biol 12:3288–3296

    CAS  PubMed  Google Scholar 

  58. Tobaben S, Thakur P, Fernandez-Chacon R, Sudhof TC, Rettig J, Stahl B (2001) A trimeric protein complex functions as a synaptic chaperone machine. Neuron 31:987–999

    Article  CAS  PubMed  Google Scholar 

  59. Zinsmaier KE, Eberle KK, Buchner E, Walter N, Benzer S (1994) Paralysis and early death in cysteine string protein mutants of Drosophila. Science 263:977–980

    Article  CAS  PubMed  Google Scholar 

  60. Tobaben S, Varoqueaux F, Brose N, Stahl B, Meyer G (2003) A brain-specific isoform of small glutamine-rich tetratricopeptide repeat-containing protein binds to Hsc70 and the cysteine string protein. J Biol Chem 278:38376–38383

    Article  CAS  PubMed  Google Scholar 

  61. Natochin M, Campbell TN, Barren B, Miller LC, Hameed S, Artemyev NO, Braun JE (2005) Characterization of the G alpha(s) regulator cysteine string protein. J Biol Chem 280:30236–30241

    Article  CAS  PubMed  Google Scholar 

  62. Zhao X, Braun AP, Braun JE (2008) Biological roles of neural J proteins. Cell Mol Life Sci 65:2385–2396

    Article  CAS  PubMed  Google Scholar 

  63. Miller LC, Swayne LA, Kay JG, Feng ZP, Jarvis SE, Zamponi GW, Braun JE (2003) Molecular determinants of cysteine string protein modulation of N-type calcium channels. J Cell Sci 116:2967–2974

    Article  CAS  PubMed  Google Scholar 

  64. Swayne LA, Beck KE, Braun JE (2006) The cysteine string protein multimeric complex. Biochem Biophys Res Commun 348:83–91

    Article  CAS  PubMed  Google Scholar 

  65. Newmyer SL, Schmid SL (2001) Dominant-interfering Hsc70 mutants disrupt multiple stages of the clathrin-coated vesicle cycle in vivo. J Cell Biol 152:607–20

    Article  CAS  PubMed  Google Scholar 

  66. Takei K, Mundigl O, Daniell L, De Camilli P (1996) The synaptic vesicle cycle: a single vesicle budding step involving clathrin and dynamin. J Cell Biol 133:1237–1250

    Article  CAS  PubMed  Google Scholar 

  67. Leshchyns’ka I, Sytnyk V, Richter M, Andreyeva A, Puchkov D, Schachner M (2006) The adhesion molecule CHL1 regulates uncoating of clathrin-coated synaptic vesicles. Neuron 52:1011–1025

    Article  PubMed  Google Scholar 

  68. Frints SG, Marynen P, Hartmann D, Fryns JP, Steyaert J, Schachner M, Rolf B, Craessaerts K, Snellinx A, Hollanders K, D’Hooge R, De Deyn PP, Froyen G (2003) CALL interrupted in a patient with non-specific mental retardation: gene dosage-dependent alteration of murine brain development and behavior. Hum Mol Genet 12:1463–1474

    Article  CAS  PubMed  Google Scholar 

  69. Chen QY, Chen Q, Feng GY, Lindpaintner K, Chen Y, Sun X, Chen Z, Gao Z, Tang J, He L (2005) Case-control association study of the close homologue of L1 (CHL1) gene and schizophrenia in the Chinese population. Schizophr Res 73:269–274

    Article  PubMed  Google Scholar 

  70. Bai L, Swayne LA, Braun JE (2007) The CSPalpha/G protein complex in PC12 cells. Biochem Biophys Res Commun 352:123–129

    Article  CAS  PubMed  Google Scholar 

  71. Ungewickell E, Ungewickell H, Holstein SE, Lindner R, Prasad K, Barouch W, Martin B, Greene LE, Eisenberg E (1995) Role of auxilin in uncoating clathrin-coated vesicles. Nature 378:632–635

    Article  CAS  PubMed  Google Scholar 

  72. Morgan JR, Prasad K, Jin S, Augustine GJ, Lafer EM (2001) Uncoating of clathrin-coated vesicles in presynaptic terminals: roles for Hsc70 and auxilin. Neuron 32:289–300

    Article  CAS  PubMed  Google Scholar 

  73. Ahnert-Hilger G, Holtje M, Pahner I, Winter S, Brunk I (2003) Regulation of vesicular neurotransmitter transporters. Rev Physiol Biochem Pharmacol 150:140–160

    Article  CAS  PubMed  Google Scholar 

  74. Eiden LE, Schafer MK, Weihe E, Schutz B (2004) The vesicular amine transporter family (SLC18): amine/proton antiporters required for vesicular accumulation and regulated exocytotic secretion of monoamines and acetylcholine. Pflugers Arch 447:636–640

    Article  CAS  PubMed  Google Scholar 

  75. Requena DF, Parra LA, Baust TB, Quiroz M, Leak RK, Garcia-Olivares J, Torres GE (2009) The molecular chaperone Hsc70 interacts with the vesicular monoamine transporter-2. J Neurochem 110:581–594

    Article  CAS  PubMed  Google Scholar 

  76. Hsu CC, Davis KM, Jin H, Foos T, Floor E, Chen W, Tyburski JB, Yang CY, Schloss JV, Wu JY (2000) Association of l-glutamic acid decarboxylase to the 70-kDa heat shock protein as a potential anchoring mechanism to synaptic vesicles. J Biol Chem 275:20822–20828

    Article  CAS  PubMed  Google Scholar 

  77. Roberts E, Kuriyama K (1968) Biochemical–physiological correlations in studies of the gamma-aminobutyric acid system. Brain Res 8:1–35

    Article  CAS  PubMed  Google Scholar 

  78. Christgau S, Schierbeck H, Aanstoot HJ, Aagaard L, Begley K, Kofod H, Hejnaes K, Baekkeskov S (1991) Pancreatic beta cells express two autoantigenic forms of glutamic acid decarboxylase, a 65-kDa hydrophilic form and a 64-kDa amphiphilic form which can be both membrane-bound and soluble. J Biol Chem 266:23516

    CAS  PubMed  Google Scholar 

  79. Hsu CC, Thomas C, Chen W, Davis KM, Foos T, Chen JL, Wu E, Floor E, Schloss JV, Wu JY (1999) Role of synaptic vesicle proton gradient and protein phosphorylation on ATP-mediated activation of membrane-associated brain glutamate decarboxylase. J Biol Chem 274:24366–24371

    Article  CAS  PubMed  Google Scholar 

  80. Kaufman DL, Houser CR, Tobin AJ (1991) Two forms of the gamma-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. J Neurochem 56:720–723

    Article  CAS  PubMed  Google Scholar 

  81. Kelty JD, Noseworthy PA, Feder ME, Robertson RM, Ramirez JM (2002) Thermal preconditioning and heat-shock protein 72 preserve synaptic transmission during thermal stress. J Neurosci 22:RC193

    PubMed  Google Scholar 

  82. Xiao C, Mileva-Seitz V, Seroude L, Robertson RM (2007) Targeting HSP70 to motoneurons protects locomotor activity from hyperthermia in Drosophila. Dev Neurobiol 67:438–455

    Article  CAS  PubMed  Google Scholar 

  83. Nikinmaa M, Leveelahti L, Dahl E, Rissanen E, Rytkonen KT, Laurila A (2008) Population origin, development and temperature of development affect the amounts of HSP70, HSP90 and the putative hypoxia-inducible factor in the tadpoles of the common frog Rana temporaria. J Exp Biol 211:1999–2004

    Article  CAS  PubMed  Google Scholar 

  84. Bosch TC, Krylow SM, Bode HR, Steele RE (1988) Thermotolerance and synthesis of heat shock proteins: these responses are present in Hydra attenuata but absent in Hydra oligactis. Proc Natl Acad Sci U S A 85:7927–7931

    Article  CAS  PubMed  Google Scholar 

  85. Newman AE, Xiao C, Robertson RM (2005) Synaptic thermoprotection in a desert-dwelling Drosophila species. J Neurobiol 64:170–180

    Article  CAS  PubMed  Google Scholar 

  86. Neal SJ, Karunanithi S, Best A, So AK, Tanguay RM, Atwood HL, Westwood JT (2006) Thermoprotection of synaptic transmission in a Drosophila heat shock factor mutant is accompanied by increased expression of Hsp83 and DnaJ-1. Physiol Genomics 25:493–501

    Article  CAS  PubMed  Google Scholar 

  87. Gibbs SJ, Barren B, Beck KE, Proft J, Zhao X, Noskova T, Braun AP, Artemyev NO, Braun JE (2009) Hsp40 couples with the CSPalpha chaperone complex upon induction of the heat shock response. PLoS ONE 4:e4595

    Article  PubMed  Google Scholar 

  88. Fei GH, Feng ZP (2008) Chronic hypoxia-induced alteration of presynaptic protein profiles and neurobehavioral dysfunction are averted by supplemental oxygen in Lymnaea stagnalis. Neuroscience 153:318–328

    Article  CAS  PubMed  Google Scholar 

  89. Krieger A, Radhakrishnan K, Pereverzev A, Siapich SA, Banat M, Kamp MA, Leroy J, Klockner U, Hescheler J, Weiergraber M, Schneider T (2006) The molecular chaperone hsp70 interacts with the cytosolic II–III loop of the Cav2.3 E-type voltage-gated Ca2+ channel. Cell Physiol Biochem 17:97–110

    Article  CAS  PubMed  Google Scholar 

  90. Jiao JD, Garg V, Yang B, Hu K (2008) Novel functional role of heat shock protein 90 in ATP-sensitive K+ channel-mediated hypoxic preconditioning. Cardiovasc Res 77:126–133

    Article  CAS  PubMed  Google Scholar 

  91. Sun HS, Feng ZP, Barber PA, Buchan AM, French RJ (2007) Kir6.2-containing ATP-sensitive potassium channels protect cortical neurons from ischemic/anoxic injury in vitro and in vivo. Neuroscience 144:1509–1515

    Article  CAS  PubMed  Google Scholar 

  92. Calderwood SK, Mambula SS, Gray PJ Jr, Theriault JR (2007) Extracellular heat shock proteins in cell signaling. FEBS Lett 581:3689–3694

    Article  CAS  PubMed  Google Scholar 

  93. Yenari MA, Liu J, Zheng Z, Vexler ZS, Lee JE, Giffard RG (2005) Antiapoptotic and anti-inflammatory mechanisms of heat-shock protein protection. Ann N Y Acad Sci 1053:74–83

    Article  CAS  PubMed  Google Scholar 

  94. Zheng Z, Kim JY, Ma H, Lee JE, Yenari MA (2008) Anti-inflammatory effects of the 70 kDa heat shock protein in experimental stroke. J Cereb Blood Flow Metab 28:53–63

    Article  CAS  PubMed  Google Scholar 

  95. Giffard RG, Xu L, Zhao H, Carrico W, Ouyang Y, Qiao Y, Sapolsky R, Steinberg G, Hu B, Yenari MA (2004) Chaperones, protein aggregation, and brain protection from hypoxic/ischemic injury. J Exp Biol 207:3213–3220

    Article  CAS  PubMed  Google Scholar 

  96. Brown IR (2007) Heat shock proteins and protection of the nervous system. Ann N Y Acad Sci 1113:147–158

    Article  CAS  PubMed  Google Scholar 

  97. Fujikake N, Nagai Y, Popiel HA, Okamoto Y, Yamaguchi M, Toda T (2008) Heat shock transcription factor 1-activating compounds suppress polyglutamine-induced neurodegeneration through induction of multiple molecular chaperones. J Biol Chem 283:26188–26197

    Article  CAS  PubMed  Google Scholar 

  98. Lee JE, Yenari MA, Sun GH, Xu L, Emond MR, Cheng D, Steinberg GK, Giffard RG (2001) Differential neuroprotection from human heat shock protein 70 overexpression in in vitro and in vivo models of ischemia and ischemia-like conditions. Exp Neurol 170:129–139

    Article  CAS  PubMed  Google Scholar 

  99. Goldfarb SB, Kashlan OB, Watkins JN, Suaud L, Yan W, Kleyman TR, Rubenstein RC (2006) Differential effects of Hsc70 and Hsp70 on the intracellular trafficking and functional expression of epithelial sodium channels. Proc Natl Acad Sci U S A 103:5817–5822

    Article  CAS  PubMed  Google Scholar 

Download references

Aknowledgements

This work was supported by an operating grant to ZPF from the Canadian Institutes of Health Research (CIHR MOP62738). TZL is a recipient of Alexander Graham Bell Canadian Graduate Scholarship from Natural Sciences and Engineering Research Council of Canada (NSERC). ZPF holds a New Investigator Award from Heart and Stroke Foundation and a Young Investigator Award in Biological Sciences from Boehringer Ingelheim (Canada) Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Ping Feng.

Additional information

Tom Z. Lu and Yi Quan contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, T.Z., Quan, Y. & Feng, ZP. Multifaceted Role of Heat Shock Protein 70 in Neurons. Mol Neurobiol 42, 114–123 (2010). https://doi.org/10.1007/s12035-010-8116-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-010-8116-6

Keywords

Navigation