Skip to main content
Log in

DOC2B, C2 Domains, and Calcium: A Tale of Intricate Interactions

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Ca+2-dependent exocytosis involves vesicle docking, priming, fusion, and recycling. This process is performed and regulated by a vast number of synaptic proteins and depends on proper protein–protein and protein–lipid interactions. Double C2 domain (DOC2) is a protein family of three isoforms found while screening DNA libraries with a C2 probe. DOC2 has three domains: the Munc13-interacting domain and tandem C2s (designated C2A and C2B) connected by a short polar linker. The C2 domain binds phospholipids in a Ca2+-dependent manner. This review focuses on the ubiquitously expressed isoform DOC2B. Sequence alignment of the tandem C2 protein family in mouse revealed high homology (81%) between rabphilin-3A and DOC2B proteins. We created a structural model of DOC2B's C2A based on the crystal structure of rabphilin-3A with and without calcium and found that the calcium-binding loops of DOC2B move upon calcium binding, enabling efficient plasma membrane penetration of its C2A. Here, we discuss the potential relation between the DOC2B bioinformatical model and its function and suggest a possible working model for its interaction with other proteins of the exocytotic machinery, including Munc13, Munc18, and syntaxin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fukuda M, Mikoshiba K (2001) Doc2gamma, a third isoform of double C2 protein, lacking calcium-dependent phospholipid binding activity. Biochem Biophys Res Commun 276:626–632

    Article  CAS  Google Scholar 

  2. Verhage M, de Vries KJ, Røshol H, Burbach JP, Gispen WH, Südhof TC (1997) DOC2 proteins in rat brain: complementary distribution and proposed function as vesicular adapter proteins in early stages of secretion. Neuron 18:453–461

    Article  PubMed  CAS  Google Scholar 

  3. Orita S, Sasaki T, Naito A, Komuro R, Ohtsuka T, Maeda M, Suzuki H, Igarashi H, Takai Y (1995) Doc2: a novel brain protein having two repeated C2-like domains. Biochem Biophys Res Commun 206:439–448

    Article  PubMed  CAS  Google Scholar 

  4. Duncan RR, Shipston MJ, Chow RH (2000) Double C2 protein. A review. Biochimie 82:421–426

    Article  PubMed  CAS  Google Scholar 

  5. Korteweg N, Denekamp FA, Verhage M, Burbach HP (2000) Different spatiotemporal expression of DOC2 genes in the developing rat brain argues for an additional, nonsynaptic role of DOC2B in early development. Eur J Neurosci 12:165–171

    Article  PubMed  CAS  Google Scholar 

  6. Higashio H, Nishimura N, Ishizaki H, Miyoshi J, Orita S, Sakane A, Sasaki T (2008) Doc2 alpha and Munc13–4 regulate Ca(2+) -dependent secretory lysosome exocytosis in mast cells. J Immunol 180:4774–4784

    PubMed  CAS  Google Scholar 

  7. Friedrich R, Groffen AJ, Connell E, van Weering JR, Gutman O, Henis YI, Davletov B, Ashery U (2008) DOC2B acts as a calcium switch and enhances vesicle fusion. J Neurosci 28:6794–6806

    Article  PubMed  CAS  Google Scholar 

  8. Bhangu PS, Genever PG, Spencer GJ, Grewal TS, Skerry TM (2001) Evidence for targeted vesicular glutamate exocytosis in osteoblasts. Bone 29:16–23

    Article  PubMed  CAS  Google Scholar 

  9. Nishizuka Y (1988) The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334:661–665

    Article  PubMed  CAS  Google Scholar 

  10. Nalefski E, Falke J (1996) The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci 5:2375–2390

    Article  PubMed  CAS  Google Scholar 

  11. Rizo J, Südhof TC (1998) C2-domains, structure and function of a universal Ca2+-binding domain. J Biol Chem 273:15879–15882

    Article  PubMed  CAS  Google Scholar 

  12. Verdaguer N, Corbalan-Garcia S, Ochoa WF, Fita I, Gómez-Fernández JC (1999) Ca(2+) bridges the C2 membrane-binding domain of protein kinase C alpha directly to phosphatidylserine. EMBO J 18:6329–6338

    Article  PubMed  CAS  Google Scholar 

  13. Groffen AJ, Brian EC, Dudok JJ, Kampmeijer J, Toonen RF, Verhage M (2004) Ca(2+)-induced recruitment of the secretory vesicle protein DOC2B to the target membrane. J Biol Chem 279:23740–23747

    Article  PubMed  CAS  Google Scholar 

  14. Groffen AJ, Friedrich R, Brian EC, Ashery U, Verhage M (2006) DOC2A and DOC2B are sensors for neuronal activity with unique calcium-dependent and kinetic properties. J Neurochem 97:818–833

    Article  PubMed  CAS  Google Scholar 

  15. Malkinson G, Spira ME (2006) Calcium concentration threshold and translocation kinetics of EGFP-DOC2B expressed in cultured Aplysia neurons. Cell Calcium 39:85–93

    PubMed  CAS  Google Scholar 

  16. Kojima T, Fukuda M, Aruga J, Mikoshiba K (1996) Calcium-dependent phospholipid binding to the C2A domain of a ubiquitous form of double C2 protein (Doc2 beta). J Biochem 120:671–676

    PubMed  CAS  Google Scholar 

  17. Coudevylle N, Montaville P, Leonov A, Zweckstetter M, Becker S (2008) Structural determinants for Ca2 + and phosphatidylinositol 4, 5-bisphosphate binding by the C2A domain of rabphilin-3A. J Biol Chem 283:35918–35928

    Article  PubMed  CAS  Google Scholar 

  18. Biadene M, Montaville P, Sheldrick GM, Becker S (2006) Structure of the C2A domain of rabphilin-3A. Acta Crystallogr D Biol Crystallogr 62:793–799

    Article  PubMed  CAS  Google Scholar 

  19. Myers JK, Pace CN (1996) Hydrogen bonding stabilizes globular proteins. Biophys J 71:2033–2039

    Article  PubMed  CAS  Google Scholar 

  20. Pace CN, Shirley BA, McNutt M, Gajiwala K (1996) Forces contributing to the conformational stability of proteins. FASEB J 10:75–83

    PubMed  CAS  Google Scholar 

  21. Pace C, Horn G, Hebert EJ, Bechert J, Shaw K, Urbanikova L, Scholtz JM, Sevcik J (2001) Tyrosine hydrogen bonds make a large contribution to protein stability. J Mol Biol 312:393–404

    Article  PubMed  CAS  Google Scholar 

  22. Pokkuluri PR, Raffen R, Dieckman L, Boogaard C, Stevens FJ, Schiffer M (2002) Increasing protein stability by polar surface residues: domain-wide consequences of interactions within a loop. Biophys J 82:391–398

    Article  PubMed  CAS  Google Scholar 

  23. Fernández-Chacón RKA, Gerber SH, García J, Matos MF, Stevens CF, Brose N, Rizo J, Rosenmund C, Südhof TC (2001) Synaptotagmin I functions as a calcium regulator of release probability. Nature 410:41–49

    Article  PubMed  Google Scholar 

  24. Perin MS, Fried VA, Mignery GA, Jahn R, Südhof TC (1990) Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature 345:260–263

    Article  PubMed  CAS  Google Scholar 

  25. Chapman ER, Davis AF (1998) Direct interaction of a Ca2+-binding loop of synaptotagmin with lipid bilayers. J Biol Chem 273:13995–14001

    Article  PubMed  CAS  Google Scholar 

  26. Bai J, Earles CA, Lewis JL, Chapman ER (2000) Membrane-embedded synaptotagmin penetrates cis or trans target membranes and clusters via a novel mechanism. J Biol Chem 275:25427–25435

    Article  PubMed  CAS  Google Scholar 

  27. Bai J, Tucker WC, Chapman ER (2004) PIP2 increases the speed-of-response of synaptotagmin and steers its membrane penetration activity toward the plasma membrane. Nat Struct Mol Biol 11:36–44

    Article  PubMed  Google Scholar 

  28. Bai J, Wang P, Chapman ER (2002) C2A activates a cryptic Ca(2+)-triggered membrane penetration activity within the C2B domain of synaptotagmin I. Proc Natl Acad Sci USA 99:1665–1670

    Article  PubMed  CAS  Google Scholar 

  29. Hui E, Bai J, Chapman ER (2006) Ca2+-triggered simultaneous membrane penetration of the tandem C2-domains of synaptotagmin I. Biophys J 91:1767–1777

    Article  PubMed  CAS  Google Scholar 

  30. Herrick DZ, Sterbling S, Rasch KA, Hinderliter A, Cafiso DS (2006) Position of synaptotagmin I at the membrane interface: cooperative interactions of tandem C2 domains. Biochemistry 45:9668–9674

    Article  PubMed  CAS  Google Scholar 

  31. Fernández-Chacón R, Shin OH, Königstorfer A, Matos MF, Meyer AC, Garcia J, Gerber SH, Rizo J, Südhof TC, Rosenmund C (2002) Structure/function analysis of Ca2+ binding to the C2A domain of synaptotagmin 1. J Neurosci 22:8438–8446

    PubMed  Google Scholar 

  32. Gerber SH, Rizo J, Südhof TC (2002) Role of electrostatic and hydrophobic interactions in Ca2+-dependent phospholipid binding by the C2A domain from synaptotagmin I. Diabetes 51:512–518

    Google Scholar 

  33. Weinreb G, Lentz BR (2007) Analysis of membrane fusion as a two-state sequential process: evaluation of the stalk model. Biophys J 92:4012–4029

    Article  PubMed  CAS  Google Scholar 

  34. Martens S, Kozlov MM, McMahon HT (2007) How synaptotagmin promotes membrane fusion. Science 316:1205–1208

    Article  PubMed  CAS  Google Scholar 

  35. Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Söllner TH, Rothman JE (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92:759–772

    Article  PubMed  CAS  Google Scholar 

  36. Rickman C, Jiménez JL, Graham ME, Archer DA, Soloviev M, Burgoyne RD, Davletov B (2006) Conserved prefusion protein assembly in regulated exocytosis. Mol Biol Cell 17:283–294

    Article  PubMed  CAS  Google Scholar 

  37. Hui E, Johnson CP, Yao J, Dunning FM, Chapman ER (2009) Synaptotagmin-mediated bending of the target membrane is a critical step in Ca(2+)-regulated fusion. Cell 138:709–721

    Article  PubMed  CAS  Google Scholar 

  38. Amatore C, Arbault S, Bouret Y, Guille M, Lemaître F, Verchier Y (2006) Regulation of exocytosis in chromaffin cells by trans-insertion of lysophosphatidylcholine and arachidonic acid into the outer leaflet of the cell membrane. Chembiochem 7(12):1998–2003

    Article  PubMed  CAS  Google Scholar 

  39. Fang Q, Berberian K, Gong L, Hafez I, Sørensen JB, Lindau M (2008) The role of the C terminus of the SNARE protein SNAP-25 in fusion pore opening and a model for fusion pore mechanics. PNAS 105:15388–15392

    Article  PubMed  Google Scholar 

  40. Alberts B, Bray D, Johnson A, Lewis J, Raff M, Roberts K, Walter P (1998) Essential cell biology. Garland, New York

    Google Scholar 

  41. Fukuda N, Emoto M, Nakamori Y, Taguchi A, Miyamoto S, Uraki S, Oka Y, Tanizawa Y (2009) DOC2B: a novel syntaxin-4 binding protein mediating insulin-regulated GLUT4 vesicle fusion in adipocytes. Diabetes 58:377–384

    Article  PubMed  CAS  Google Scholar 

  42. Ke B, Oh E, Thurmond DC (2007) Doc2beta is a novel Munc18c-interacting partner and positive effector of syntaxin 4-mediated exocytosis. J Biol Chem 282:21786–21797

    Article  PubMed  CAS  Google Scholar 

  43. Miyazaki M, Emoto M, Fukuda N, Hatanaka M, Taguchi A, Miyamoto S, Tanizawa Y (2009) DOC2b is a SNARE regulator of glucose-stimulated delayed insulin secretion. Biochem Biophys Res Commun 384:461–465

    Article  PubMed  CAS  Google Scholar 

  44. Sakaguchi G, Manabe T, Kobayashi K, Orita S, Sasaki T, Naito A, Maeda M, Igarashi H, Katsuura G, Nishioka H, Mizoguchi A, Itohara S, Takahashi T, Takai Y (1999) Doc2alpha is an activity-dependent modulator of excitatory synaptic transmission. Eur J Neurosci 11:4262–4268

    Article  PubMed  CAS  Google Scholar 

  45. Sugita S, Shin OH, Han W, Lao Y, Südhof TC (2002) Synaptotagmins form a hierarchy of exocytotic Ca(2+) sensors with distinct Ca(2+) affinities. EMBO J 21:270–280

    Article  PubMed  CAS  Google Scholar 

  46. Deák F, Shin OH, Tang J, Hanson P, Ubach J, Jahn R, Rizo J, Kavalali ET, Südhof TC (2006) Rabphilin regulates SNARE-dependent re-priming of synaptic vesicles for fusion. EMBO J 25:2856–2866

    Article  PubMed  CAS  Google Scholar 

  47. Montaville P, Schlicker C, Leonov A, Zweckstetter M, Sheldrick GM, Becker S (2007) The C2A-C2B linker defines the high affinity Ca(2+) binding mode of rabphilin-3A. J Biol Chem 282:5015–5025

    Article  PubMed  CAS  Google Scholar 

  48. Ubach J, Zhang X, Shao X, Südhof TC, Rizo J (1998) Ca2+ binding to synaptotagmin: how many Ca2+ ions bind to the tip of a C2-domain? EMBO J 17:3921–3930

    Article  PubMed  CAS  Google Scholar 

  49. Ochoa WF, Corbalán-Garcia S, Eritja R, Rodríguez-Alfaro JA, Gómez-Fernández JC, Fita I, Verdaguer N (2002) Additional binding sites for anionic phospholipids and calcium ions in the crystal structures of complexes of the C2 domain of protein kinase c alpha. J Mol Biol 320:277–291

    Article  PubMed  CAS  Google Scholar 

  50. Sakaguchi G, Orita S, Maeda M, Igarashi H, Takai Y (1995) Molecular cloning of an isoform of Doc2 having two C2-like domains. Biochem Biophys Res Commun 217:1053–1061

    Article  PubMed  CAS  Google Scholar 

  51. Orita S, Sasaki T, Komuro R, Sakaguchi G, Maeda M, Igarashi H, Takai Y (1996) Doc2 enhances Ca2+-dependent exocytosis from PC12 cells. J Biol Chem 271:7257–7260

    Article  PubMed  CAS  Google Scholar 

  52. Orita S, Naito A, Sakaguchi G, Maeda M, Igarashi H, Sasaki T, Takai Y (1997) Physical and functional interactions of Doc2 and Munc13 in Ca2+-dependent exocytotic machinery. J Biol Chem 272:16081–16084

    Article  PubMed  CAS  Google Scholar 

  53. Mochida S, Orita S, Sakaguchi G, Sasaki T, Takai Y (1998) Role of the Doc2 alpha-Munc13-1 interaction in the neurotransmitter release process. Proc Natl Acad Sci USA 95:11418–11422

    Article  PubMed  CAS  Google Scholar 

  54. Duncan RR, Betz A, Shipston MJ, Brose N, Chow RH (1999) Transient, phorbol ester-induced DOC2–Munc13 interactions in vivo. J Biol Chem 274:27347–27350

    Article  PubMed  CAS  Google Scholar 

  55. Abdullah LH, Bundy JT, Ehre C, Davis CW (2003) Mucin secretion and PKC isoforms in SPOC1 goblet cells: differential activation by purinergic agonist and PMA. Am J Physiol Lung Cell Mol Physiol 285:L149–L160

    PubMed  CAS  Google Scholar 

  56. Ashery U, Varoqueaux F, Voets T, Betz A, Thakur P, Koch H, Neher E, Brose N, Rettig J (2000) Munc13-1 acts as a priming factor for large dense-core vesicles in bovine chromaffin cells. EMBO J 19:3586–3596

    Article  PubMed  CAS  Google Scholar 

  57. Zikich D, Mezer A, Varoqueaux F, Sheinin A, Junge HJ, Nachliel E, Melamed R, Brose N, Gutman M, Ashery U (2008) Vesicle priming and recruitment by ubMunc13-2 are differentially regulated by calcium and calmodulin. J Neurosci 28:1949–1960

    Article  PubMed  CAS  Google Scholar 

  58. Basu J, Betz A, Brose N, Rosenmund C (2007) Munc13-1 C1 domain activation lowers the energy barrier for synaptic vesicle fusion. J Neurosci 27:1200–1210

    Article  PubMed  CAS  Google Scholar 

  59. Hori T, Takai Y, Takahashi T (1999) Presynaptic mechanism for phorbol ester-induced synaptic potentiation. J Neurosci 19:7262–7267

    PubMed  CAS  Google Scholar 

  60. Wakade TD, Bhave SV, Bhave AS, Malhotra RK, Wakade AR (1991) Depolarizing stimuli and neurotransmitters utilize separate pathways to activate protein kinase C in sympathetic neurons. J Biol Chem 266:6424–6428

    PubMed  CAS  Google Scholar 

  61. Oancea E, Meyer T (1998) Protein kinase C as a molecular machine for decoding calcium and diacylglycerol signals. Cell 95:307–318

    Article  PubMed  CAS  Google Scholar 

  62. Voets T (2000) Dissection of three Ca2+-dependent steps leading to secretion in chromaffin cells from mouse adrenal slices. Neuron 28:537–545

    Article  PubMed  CAS  Google Scholar 

  63. Toonen RF (2003) Role of Munc18-1 in synaptic vesicle and large dense-core vesicle secretion. Biochem Soc Trans 31:848–850

    Article  PubMed  CAS  Google Scholar 

  64. Rizo J, Rosenmund C (2008) Synaptic vesicle fusion. Nat Struct Mol Biol 15:665–674

    Article  PubMed  CAS  Google Scholar 

  65. Jewell JL, Oh E, Bennett SM, Meroueh SO, Thurmond DC (2008) The tyrosine phosphorylation of Munc18c induces a switch in binding specificity from syntaxin 4 to Doc2beta. J Biol Chem 283:21734–21746

    Article  PubMed  CAS  Google Scholar 

  66. Chapman ER (2008) How does synaptotagmin trigger neurotransmitter release? Annu Rev Biochem 77:615–641

    Article  PubMed  CAS  Google Scholar 

  67. Fukuda M, Kanno E (2005) Analysis of the role of Rab27 effector Slp4-a/Granuphilin-a in dense-core vesicle exocytosis. Methods Enzymol 403:445–457

    Article  PubMed  CAS  Google Scholar 

  68. Fukuda M, Saegusa C, Mikoshiba K (2001) Novel splicing isoforms of synaptotagmin-like proteins 2 and 3: identification of the Slp homology domain. Biochem Biophys Res Commun 283:513–519

    Article  PubMed  CAS  Google Scholar 

  69. Krivov GG, Shapovalov MV, Dunbrack RL Jr (2009) Improved prediction of protein side-chain conformations with SCWRL4. Proteins 77(4):778–95

    Article  PubMed  CAS  Google Scholar 

  70. Rohl CA, Strauss CE, Misura KM, Baker D (2004) Protein structure prediction using Rosetta. Methods Enzymol 383:66–93

    Article  PubMed  CAS  Google Scholar 

  71. Lovell SC, Davis IW, Arendall WB III, de Bakker PIW, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by C-alpha geometry: phi, psi, and C-beta deviation. Proteins 50:437–450

    Article  PubMed  CAS  Google Scholar 

  72. Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB 3rd, Snoeyink J, Richardson JS, Richardson DC (2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35:W375–W383

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uri Ashery.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedrich, R., Yeheskel, A. & Ashery, U. DOC2B, C2 Domains, and Calcium: A Tale of Intricate Interactions. Mol Neurobiol 41, 42–51 (2010). https://doi.org/10.1007/s12035-009-8094-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-009-8094-8

Keywords

Navigation