Skip to main content

Advertisement

Log in

Central Nervous System Regeneration Inhibitors and their Intracellular Substrates

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Injury to the central nervous system (CNS) initiates a cascade of responses that is inhibitory to the regeneration of neurons and full recovery. At the site of injury, glial cells conspire with an inhibitory biochemical milieu to construct both physical and chemical barriers that prevent the outgrowth of axons to or beyond the lesion site. These inhibitors include factors derived from myelin, repulsive guidance cues, and chondroitin sulfate proteoglycans. Each bind receptors on the axon surface to initiating intracellular signaling cascades that ultimately result in cytoskeletal reorganization and growth cone collapse. Here, we present an overview of the molecules, receptors, and signaling pathways that inhibit CNS regeneration, with a particular focus on the intracellular signaling machinery that may function as convergent targets for multiple inhibitory ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. David S, Aguayo AJ (1981) Axonal elongation into peripheral nervous system "bridges" after central nervous system injury in adult rats. Science 214(4523):931–933

    CAS  PubMed  Google Scholar 

  2. Eftekharpour E, Karimi-Abdolrezaee S, Fehlings MG (2008) Current status of experimental cell replacement approaches to spinal cord injury. Neurosurg Focus 24(3–4):E19

    PubMed  Google Scholar 

  3. Yiu G, He Z (2006) Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7(8):617–627

    CAS  PubMed  Google Scholar 

  4. Carulli D et al (2005) Chondroitin sulfate proteoglycans in neural development and regeneration. Curr Opin Neurobiol 15(1):116–120

    PubMed  Google Scholar 

  5. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5(2):146–156

    CAS  PubMed  Google Scholar 

  6. Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49(6):377–391

    CAS  PubMed  Google Scholar 

  7. Gris P et al (2007) Transcriptional regulation of scar gene expression in primary astrocytes. Glia 55(11):1145–1155

    PubMed  Google Scholar 

  8. Jones LL, Margolis RU, Tuszynski MH (2003) The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury. Exp Neurol 182(2):399–411

    CAS  PubMed  Google Scholar 

  9. Bradbury EJ et al (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416(6881):636–640

    CAS  PubMed  Google Scholar 

  10. Schmalfeldt M et al (2000) Brain derived versican V2 is a potent inhibitor of axonal growth. J Cell Sci 113(Pt 5):807–816

    CAS  PubMed  Google Scholar 

  11. Ughrin YM, Chen ZJ, Levine JM (2003) Multiple regions of the NG2 proteoglycan inhibit neurite growth and induce growth cone collapse. J Neurosci 23(1):175–186

    CAS  PubMed  Google Scholar 

  12. Fidler PS et al (1999) Comparing astrocytic cell lines that are inhibitory or permissive for axon growth: the major axon-inhibitory proteoglycan is NG2. J Neurosci 19(20):8778–8788

    CAS  PubMed  Google Scholar 

  13. Laabs TL et al (2007) Inhibiting glycosaminoglycan chain polymerization decreases the inhibitory activity of astrocyte-derived chondroitin sulfate proteoglycans. J Neurosci 27(52):14494–14501

    CAS  PubMed  Google Scholar 

  14. Kwok JC et al (2008) Proteoglycans in the central nervous system: plasticity, regeneration and their stimulation with chondroitinase ABC. Restor Neurol Neurosci 26(2–3):131–145

    PubMed  Google Scholar 

  15. Crocker PR, Varki A (2001) Siglecs in the immune system. Immunology 103(2):137–145

    CAS  PubMed  Google Scholar 

  16. Arquint M et al (1987) Molecular cloning and primary structure of myelin-associated glycoprotein. Proc Natl Acad Sci USA 84(2):600–604

    CAS  PubMed  Google Scholar 

  17. Lai C et al (1987) Neural protein 1B236/myelin-associated glycoprotein (MAG) defines a subgroup of the immunoglobulin superfamily. Immunol Rev 100:129–151

    CAS  PubMed  Google Scholar 

  18. Schachner M, Bartsch U (2000) Multiple functions of the myelin-associated glycoprotein MAG (siglec-4a) in formation and maintenance of myelin. Glia 29(2):154–165

    CAS  PubMed  Google Scholar 

  19. McKerracher L et al (1994) Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13(4):805–811

    CAS  PubMed  Google Scholar 

  20. Mukhopadhyay G et al (1994) A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13(3):757–767

    CAS  PubMed  Google Scholar 

  21. Bartsch S et al (1997) Increased number of unmyelinated axons in optic nerves of adult mice deficient in the myelin-associated glycoprotein (MAG). Brain Res 762(1–2):231–234

    CAS  PubMed  Google Scholar 

  22. Bartsch U et al (1995) Multiply myelinated axons in the optic nerve of mice deficient for the myelin-associated glycoprotein. Glia 14(2):115–122

    CAS  PubMed  Google Scholar 

  23. Li C et al (1998) Myelin associated glycoprotein modulates glia–axon contact in vivo. J Neurosci Res 51(2):210–217

    CAS  PubMed  Google Scholar 

  24. Lassmann H et al (1997) Dying-back oligodendrogliopathy: a late sequel of myelin-associated glycoprotein deficiency. Glia 19(2):104–110

    CAS  PubMed  Google Scholar 

  25. Shen YJ et al (1998) Myelin-associated glycoprotein in myelin and expressed by Schwann cells inhibits axonal regeneration and branching. Mol Cell Neurosci 12(1–2):79–91

    CAS  PubMed  Google Scholar 

  26. Bartsch U et al (1995) Lack of evidence that myelin-associated glycoprotein is a major inhibitor of axonal regeneration in the CNS. Neuron 15(6):1375–1381

    CAS  PubMed  Google Scholar 

  27. Caroni P, Schwab ME (1988) Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. J Cell Biol 106(4):1281–1288

    CAS  PubMed  Google Scholar 

  28. Caroni P, Schwab ME (1988) Antibody against myelin-associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter. Neuron 1(1):85–96

    CAS  PubMed  Google Scholar 

  29. Bregman BS et al (1995) Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature 378(6556):498–501

    CAS  PubMed  Google Scholar 

  30. Schnell L, Schwab ME (1990) Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 343(6255):269–272

    CAS  PubMed  Google Scholar 

  31. Schnell L, Schwab ME (1993) Sprouting and regeneration of lesioned corticospinal tract fibres in the adult rat spinal cord. Eur J Neurosci 5(9):1156–1171

    CAS  PubMed  Google Scholar 

  32. Chen MS et al (2000) Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403(6768):434–439

    CAS  PubMed  Google Scholar 

  33. GrandPre T et al (2000) Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403(6768):439–444

    CAS  PubMed  Google Scholar 

  34. Prinjha R et al (2000) Inhibitor of neurite outgrowth in humans. Nature 403(6768):383–384

    CAS  PubMed  Google Scholar 

  35. Dodd DA et al (2005) Nogo-A, -B, and -C are found on the cell surface and interact together in many different cell types. J Biol Chem 280(13):12494–12502

    CAS  PubMed  Google Scholar 

  36. Josephson A et al (2001) NOGO mRNA expression in adult and fetal human and rat nervous tissue and in weight drop injury. Exp Neurol 169(2):319–328

    CAS  PubMed  Google Scholar 

  37. Huber AB et al (2002) Patterns of Nogo mRNA and protein expression in the developing and adult rat and after CNS lesions. J Neurosci 22(9):3553–3567

    CAS  PubMed  Google Scholar 

  38. Oertle T et al (2003) Nogo-A inhibits neurite outgrowth and cell spreading with three discrete regions. J Neurosci 23(13):5393–5406

    CAS  PubMed  Google Scholar 

  39. Voeltz GK et al (2006) A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 124(3):573–586

    CAS  PubMed  Google Scholar 

  40. Zheng B et al (2003) Lack of enhanced spinal regeneration in Nogo-deficient mice. Neuron 38(2):213–224

    CAS  PubMed  Google Scholar 

  41. Kim JE et al (2003) Axon regeneration in young adult mice lacking Nogo-A/B. Neuron 38(2):187–199

    CAS  PubMed  Google Scholar 

  42. Simonen M et al (2003) Systemic deletion of the myelin-associated outgrowth inhibitor Nogo-A improves regenerative and plastic responses after spinal cord injury. Neuron 38(2):201–211

    CAS  PubMed  Google Scholar 

  43. Dimou L et al (2006) Nogo-A-deficient mice reveal strain-dependent differences in axonal regeneration. J Neurosci 26(21):5591–5603

    CAS  PubMed  Google Scholar 

  44. Cafferty WB et al (2007) Response to correspondence: Kim et al., “Axon regeneration in young adult mice lacking Nogo-A/B.” Neuron 38, 187–199. Neuron 54(2):195–199

    CAS  PubMed  Google Scholar 

  45. Cafferty WB, Strittmatter SM (2006) The Nogo–Nogo receptor pathway limits a spectrum of adult CNS axonal growth. J Neurosci 26(47):12242–12250

    CAS  PubMed  Google Scholar 

  46. Steward O et al (2007) Response to: Kim et al., “Axon regeneration in young adult mice lacking Nogo-A/B.” Neuron 38, 187–199. Neuron 54(2):191–195

    CAS  PubMed  Google Scholar 

  47. Lee JK et al (2009) Reassessment of corticospinal tract regeneration in Nogo-deficient mice. J Neurosci 29(27):8649–8654

    CAS  PubMed  Google Scholar 

  48. Wang KC et al (2002) Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 417(6892):941–944

    CAS  PubMed  Google Scholar 

  49. Kottis V et al (2002) Oligodendrocyte-myelin glycoprotein (OMgp) is an inhibitor of neurite outgrowth. J Neurochem 82(6):1566–1569

    CAS  PubMed  Google Scholar 

  50. Mikol DD, Gulcher JR, Stefansson K (1990) The oligodendrocyte-myelin glycoprotein belongs to a distinct family of proteins and contains the HNK-1 carbohydrate. J Cell Biol 110(2):471–479

    CAS  PubMed  Google Scholar 

  51. Kobe B, Deisenhofer J (1994) The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci 19(10):415–421

    CAS  PubMed  Google Scholar 

  52. Habib AA et al (1998) Expression of the oligodendrocyte-myelin glycoprotein by neurons in the mouse central nervous system. J Neurochem 70(4):1704–1711

    CAS  PubMed  Google Scholar 

  53. Huang JK et al (2005) Glial membranes at the node of Ranvier prevent neurite outgrowth. Science 310(5755):1813–1817

    CAS  PubMed  Google Scholar 

  54. Ji B et al (2008) Assessment of functional recovery and axonal sprouting in oligodendrocyte-myelin glycoprotein (OMgp) null mice after spinal cord injury. Mol Cell Neurosci 39(2):258–267

    CAS  PubMed  Google Scholar 

  55. Moore SW, Tessier-Lavigne M, Kennedy TE (2007) Netrins and their receptors. Adv Exp Med Biol 621:17–31

    PubMed  Google Scholar 

  56. Hedgecock EM, Culotti JG, Hall DH (1990) The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 4(1):61–85

    CAS  PubMed  Google Scholar 

  57. Serafini T et al (1994) The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 78(3):409–424

    CAS  PubMed  Google Scholar 

  58. Manitt C et al (2001) Widespread expression of netrin-1 by neurons and oligodendrocytes in the adult mammalian spinal cord. J Neurosci 21(11):3911–3922

    CAS  PubMed  Google Scholar 

  59. Low K et al (2008) Netrin-1 is a novel myelin-associated inhibitor to axon growth. J Neurosci 28(5):1099–1108

    CAS  PubMed  Google Scholar 

  60. Koncina E et al (2007) Role of semaphorins during axon growth and guidance. Adv Exp Med Biol 621:50–64

    PubMed  Google Scholar 

  61. Pasterkamp RJ, Verhaagen J (2006) Semaphorins in axon regeneration: developmental guidance molecules gone wrong? Philos Trans R Soc Lond B Biol Sci 361(1473):1499–1511

    CAS  PubMed  Google Scholar 

  62. Luo Y, Raible D, Raper JA (1993) Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 75(2):217–227

    CAS  PubMed  Google Scholar 

  63. Cohen RI et al (2003) A role for semaphorins and neuropilins in oligodendrocyte guidance. J Neurochem 85(5):1262–1278

    CAS  PubMed  Google Scholar 

  64. Moreau-Fauvarque C et al (2003) The transmembrane semaphorin Sema4D/CD100, an inhibitor of axonal growth, is expressed on oligodendrocytes and upregulated after CNS lesion. J Neurosci 23(27):9229–9239

    CAS  PubMed  Google Scholar 

  65. Pasterkamp RJ, Ruitenberg MJ, Verhaagen J (1999) Semaphorins and their receptors in olfactory axon guidance. Cell Mol Biol (Noisy-le-grand) 45(6):763–779

    CAS  Google Scholar 

  66. De Winter F, Holtmaat AJ, Verhaagen J (2002) Neuropilin and class 3 semaphorins in nervous system regeneration. Adv Exp Med Biol 515:115–139

    PubMed  Google Scholar 

  67. Kaneko S et al (2006) A selective Sema3A inhibitor enhances regenerative responses and functional recovery of the injured spinal cord. Nat Med 12(12):1380–1389

    CAS  PubMed  Google Scholar 

  68. Du J, Fu C, Sretavan DW (2007) Eph/ephrin signaling as a potential therapeutic target after central nervous system injury. Curr Pharm Des 13(24):2507–2518

    CAS  PubMed  Google Scholar 

  69. Benson MD et al (2005) Ephrin-B3 is a myelin-based inhibitor of neurite outgrowth. Proc Natl Acad Sci USA 102(30):10694–10699

    CAS  PubMed  Google Scholar 

  70. Wang KC et al (2002) P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature 420(6911):74–78

    CAS  PubMed  Google Scholar 

  71. Liu BP et al (2002) Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor. Science 297(5584):1190–1193

    CAS  PubMed  Google Scholar 

  72. Fournier AE, GrandPre T, Strittmatter SM (2001) Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409(6818):341–346

    CAS  PubMed  Google Scholar 

  73. Pignot V et al (2003) Characterization of two novel proteins, NgRH1 and NgRH2, structurally and biochemically homologous to the Nogo-66 receptor. J Neurochem 85(3):717–728

    Article  CAS  PubMed  Google Scholar 

  74. Venkatesh K et al (2005) The Nogo-66 receptor homolog NgR2 is a sialic acid-dependent receptor selective for myelin-associated glycoprotein. J Neurosci 25(4):808–822

    CAS  PubMed  Google Scholar 

  75. Wong ST et al (2002) A p75(NTR) and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein. Nat Neurosci 5(12):1302–1308

    CAS  PubMed  Google Scholar 

  76. Mi S et al (2004) LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci 7(3):221–228

    CAS  PubMed  Google Scholar 

  77. Park JB et al (2005) A TNF receptor family member, TROY, is a coreceptor with Nogo receptor in mediating the inhibitory activity of myelin inhibitors. Neuron 45(3):345–351

    CAS  PubMed  Google Scholar 

  78. Shao Z et al (2005) TAJ/TROY, an orphan TNF receptor family member, binds Nogo-66 receptor 1 and regulates axonal regeneration. Neuron 45(3):353–359

    CAS  PubMed  Google Scholar 

  79. Fournier AE et al (2002) Truncated soluble Nogo receptor binds Nogo-66 and blocks inhibition of axon growth by myelin. J Neurosci 22(20):8876–8883

    CAS  PubMed  Google Scholar 

  80. GrandPre T, Li S, Strittmatter SM (2002) Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature 417(6888):547–551

    CAS  PubMed  Google Scholar 

  81. Li S et al (2004) Blockade of Nogo-66, myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein by soluble Nogo-66 receptor promotes axonal sprouting and recovery after spinal injury. J Neurosci 24(46):10511–10520

    CAS  PubMed  Google Scholar 

  82. Harvey PA et al (2009) Blockade of Nogo receptor ligands promotes functional regeneration of sensory axons after dorsal root crush. J Neurosci 29(19):6285–6295

    CAS  PubMed  Google Scholar 

  83. Fischer D, He Z, Benowitz LI (2004) Counteracting the Nogo receptor enhances optic nerve regeneration if retinal ganglion cells are in an active growth state. J Neurosci 24(7):1646–1651

    CAS  PubMed  Google Scholar 

  84. Wang X et al (2006) Delayed Nogo receptor therapy improves recovery from spinal cord contusion. Ann Neurol 60(5):540–549

    CAS  PubMed  Google Scholar 

  85. Kim JE et al (2004) Nogo-66 receptor prevents raphespinal and rubrospinal axon regeneration and limits functional recovery from spinal cord injury. Neuron 44(3):439–451

    CAS  PubMed  Google Scholar 

  86. Zheng B et al (2005) Genetic deletion of the Nogo receptor does not reduce neurite inhibition in vitro or promote corticospinal tract regeneration in vivo. Proc Natl Acad Sci USA 102(4):1205–1210

    CAS  PubMed  Google Scholar 

  87. Chivatakarn O et al (2007) The Nogo-66 receptor NgR1 is required only for the acute growth cone-collapsing but not the chronic growth-inhibitory actions of myelin inhibitors. J Neurosci 27(27):7117–7124

    CAS  PubMed  Google Scholar 

  88. McGee AW et al (2005) Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor. Science 309(5744):2222–2226

    CAS  PubMed  Google Scholar 

  89. Lee H et al (2008) Synaptic function for the Nogo-66 receptor NgR1: regulation of dendritic spine morphology and activity-dependent synaptic strength. J Neurosci 28(11):2753–2765

    CAS  PubMed  Google Scholar 

  90. Atwal JK et al (2008) PirB is a functional receptor for myelin inhibitors of axonal regeneration. Science 322(5903):967–970

    CAS  PubMed  Google Scholar 

  91. Syken J et al (2006) PirB restricts ocular-dominance plasticity in visual cortex. Science 313(5794):1795–1800

    CAS  PubMed  Google Scholar 

  92. Yang LJ et al (1996) Gangliosides are neuronal ligands for myelin-associated glycoprotein. Proc Natl Acad Sci USA 93(2):814–818

    CAS  PubMed  Google Scholar 

  93. Vyas AA et al (2002) Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration. Proc Natl Acad Sci USA 99(12):8412–8417

    CAS  PubMed  Google Scholar 

  94. DeBellard ME et al (1996) Myelin-associated glycoprotein inhibits axonal regeneration from a variety of neurons via interaction with a sialoglycoprotein. Mol Cell Neurosci 7(2):89–101

    CAS  PubMed  Google Scholar 

  95. Mehta NR et al (2007) Gangliosides and Nogo receptors independently mediate myelin-associated glycoprotein inhibition of neurite outgrowth in different nerve cells. J Biol Chem 282(38):27875–27886

    CAS  PubMed  Google Scholar 

  96. Venkatesh K et al (2007) Molecular dissection of the myelin-associated glycoprotein receptor complex reveals cell type-specific mechanisms for neurite outgrowth inhibition. J Cell Biol 177(3):393–399

    CAS  PubMed  Google Scholar 

  97. Williams G et al (2008) Ganglioside inhibition of neurite outgrowth requires Nogo receptor function: identification of interaction sites and development of novel antagonists. J Biol Chem 283(24):16641–16652

    CAS  PubMed  Google Scholar 

  98. Yamashita T, Higuchi H, Tohyama M (2002) The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho. J Cell Biol 157(4):565–570

    CAS  PubMed  Google Scholar 

  99. Hu F, Strittmatter SM (2008) The N-terminal domain of Nogo-A inhibits cell adhesion and axonal outgrowth by an integrin-specific mechanism. J Neurosci 28(5):1262–1269

    CAS  PubMed  Google Scholar 

  100. Goh EL et al (2008) beta1-integrin mediates myelin-associated glycoprotein signaling in neuronal growth cones. Mol Brain 1(1):10

    PubMed  Google Scholar 

  101. Loschinger J et al (1997) Retinal axon growth cone responses to different environmental cues are mediated by different second-messenger systems. J Neurobiol 33(6):825–834

    CAS  PubMed  Google Scholar 

  102. Song H et al (1998) Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 281(5382):1515–1518

    CAS  PubMed  Google Scholar 

  103. Hasegawa Y et al (2004) Promotion of axon regeneration by myelin-associated glycoprotein and Nogo through divergent signals downstream of Gi/G. J Neurosci 24(30):6826–6832

    CAS  PubMed  Google Scholar 

  104. Sivasankaran R et al (2004) PKC mediates inhibitory effects of myelin and chondroitin sulfate proteoglycans on axonal regeneration. Nat Neurosci 7(3):261–268

    CAS  PubMed  Google Scholar 

  105. Snow DM et al (1994) Chondroitin sulfate proteoglycan elevates cytoplasmic calcium in DRG neurons. Dev Biol 166(1):87–100

    CAS  PubMed  Google Scholar 

  106. Koprivica V et al (2005) EGFR activation mediates inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans. Science 310(5745):106–110

    CAS  PubMed  Google Scholar 

  107. Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420(6916):629–635

    CAS  PubMed  Google Scholar 

  108. Jalink K et al (1994) Inhibition of lysophosphatidate- and thrombin-induced neurite retraction and neuronal cell rounding by ADP ribosylation of the small GTP-binding protein Rho. J Cell Biol 126(3):801–810

    CAS  PubMed  Google Scholar 

  109. Niederost B et al (2002) Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Rac1. J Neurosci 22(23):10368–10376

    CAS  PubMed  Google Scholar 

  110. Lehmann M et al (1999) Inactivation of Rho signaling pathway promotes CNS axon regeneration. J Neurosci 19(17):7537–7547

    CAS  PubMed  Google Scholar 

  111. Fournier AE, Takizawa BT, Strittmatter SM (2003) Rho kinase inhibition enhances axonal regeneration in the injured CNS. J Neurosci 23(4):1416–1423

    CAS  PubMed  Google Scholar 

  112. Dergham P et al (2002) Rho signaling pathway targeted to promote spinal cord repair. J Neurosci 22(15):6570–6577

    CAS  PubMed  Google Scholar 

  113. Domeniconi M et al (2005) MAG induces regulated intramembrane proteolysis of the p75 neurotrophin receptor to inhibit neurite outgrowth. Neuron 46(6):849–855

    CAS  PubMed  Google Scholar 

  114. Yamashita T, Tohyama M (2003) The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nat Neurosci 6(5):461–467

    CAS  PubMed  Google Scholar 

  115. Lingor P et al (2007) Inhibition of Rho kinase (ROCK) increases neurite outgrowth on chondroitin sulphate proteoglycan in vitro and axonal regeneration in the adult optic nerve in vivo. J Neurochem 103(1):181–189

    CAS  PubMed  Google Scholar 

  116. Monnier PP et al (2003) The Rho/ROCK pathway mediates neurite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans of the CNS glial scar. Mol Cell Neurosci 22(3):319–330

    CAS  PubMed  Google Scholar 

  117. Borisoff JF et al (2003) Suppression of Rho-kinase activity promotes axonal growth on inhibitory CNS substrates. Mol Cell Neurosci 22(3):405–416

    CAS  PubMed  Google Scholar 

  118. Sahin M et al (2005) Eph-dependent tyrosine phosphorylation of ephexin1 modulates growth cone collapse. Neuron 46(2):191–204

    CAS  PubMed  Google Scholar 

  119. Moore SW et al (2008) Rho inhibition recruits DCC to the neuronal plasma membrane and enhances axon chemoattraction to netrin 1. Development 135(17):2855–2864

    CAS  PubMed  Google Scholar 

  120. Alabed YZ et al (2006) Neuronal responses to myelin are mediated by rho kinase. J Neurochem 96(6):1616–1625

    CAS  PubMed  Google Scholar 

  121. Kubo T et al (2008) Myosin IIA is required for neurite outgrowth inhibition produced by repulsive guidance molecule. J Neurochem 105(1):113–126

    CAS  PubMed  Google Scholar 

  122. Hsieh SH, Ferraro GB, Fournier AE (2006) Myelin-associated inhibitors regulate cofilin phosphorylation and neuronal inhibition through LIM kinase and Slingshot phosphatase. J Neurosci 26(3):1006–1015

    CAS  PubMed  Google Scholar 

  123. Bamburg JR, Bernstein BW (2008) ADF/cofilin. Curr Biol 18(7):R273–R275

    CAS  PubMed  Google Scholar 

  124. Mimura F et al (2006) Myelin-associated glycoprotein inhibits microtubule assembly by a Rho-kinase-dependent mechanism. J Biol Chem 281(23):15970–15979

    CAS  PubMed  Google Scholar 

  125. Alabed YZ et al (2007) Identification of CRMP4 as a convergent regulator of axon outgrowth inhibition. J Neurosci 27(7):1702–1711

    CAS  PubMed  Google Scholar 

  126. Fukata Y et al (2002) CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nat Cell Biol 4(8):583–591

    CAS  PubMed  Google Scholar 

  127. Quinn CC et al (2003) TUC-4b, a novel TUC family variant, regulates neurite outgrowth and associates with vesicles in the growth cone. J Neurosci 23(7):2815–2823

    CAS  PubMed  Google Scholar 

  128. Cai D et al (2001) Neuronal cyclic AMP controls the developmental loss in ability of axons to regenerate. J Neurosci 21(13):4731–4739

    CAS  PubMed  Google Scholar 

  129. Gao Y et al (2003) Neurotrophins elevate cAMP to reach a threshold required to overcome inhibition by MAG through extracellular signal-regulated kinase-dependent inhibition of phosphodiesterase. J Neurosci 23(37):11770–11777

    CAS  PubMed  Google Scholar 

  130. Cai D et al (1999) Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism. Neuron 22(1):89–101

    CAS  PubMed  Google Scholar 

  131. Qiu J et al (2002) Spinal axon regeneration induced by elevation of cyclic AMP. Neuron 34(6):895–903

    CAS  PubMed  Google Scholar 

  132. Neumann S et al (2002) Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron 34(6):885–893

    CAS  PubMed  Google Scholar 

  133. Gao Y et al (2004) Activated CREB is sufficient to overcome inhibitors in myelin and promote spinal axon regeneration in vivo. Neuron 44(4):609–621

    CAS  PubMed  Google Scholar 

  134. Cai D et al (2002) Arginase I and polyamines act downstream from cyclic AMP in overcoming inhibition of axonal growth MAG and myelin in vitro. Neuron 35(4):711–719

    CAS  PubMed  Google Scholar 

  135. Cao Z et al (2006) The cytokine interleukin-6 is sufficient but not necessary to mimic the peripheral conditioning lesion effect on axonal growth. J Neurosci 26(20):5565–5573

    CAS  PubMed  Google Scholar 

  136. Wen Z et al (2007) BMP gradients steer nerve growth cones by a balancing act of LIM kinase and Slingshot phosphatase on ADF/cofilin. J Cell Biol 178(1):107–119

    CAS  PubMed  Google Scholar 

  137. Benowitz L, Yin Y (2008) Rewiring the injured CNS: lessons from the optic nerve. Exp Neurol 209(2):389–398

    CAS  PubMed  Google Scholar 

  138. Park KK et al (2008) Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322(5903):963–966

    CAS  PubMed  Google Scholar 

  139. Neumann S, Woolf CJ (1999) Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 23(1):83–91

    CAS  PubMed  Google Scholar 

  140. Seijffers R, Allchorne AJ, Woolf CJ (2006) The transcription factor ATF-3 promotes neurite outgrowth. Mol Cell Neurosci 32(1–2):143–154

    CAS  PubMed  Google Scholar 

  141. Dill J et al (2008) Inactivation of glycogen synthase kinase 3 promotes axonal growth and recovery in the CNS. J Neurosci 28(36):8914–8928

    CAS  PubMed  Google Scholar 

  142. Bomze HM et al (2001) Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons. Nat Neurosci 4(1):38–43

    CAS  PubMed  Google Scholar 

  143. Temporin K et al (2008) IL-1beta promotes neurite outgrowth by deactivating RhoA via p38 MAPK pathway. Biochem Biophys Res Commun 365(2):375–380

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Aaron McGee and Corrie Fox for their comments and suggestions on the manuscript and graphic work, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Jacobson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nash, M., Pribiag, H., Fournier, A.E. et al. Central Nervous System Regeneration Inhibitors and their Intracellular Substrates. Mol Neurobiol 40, 224–235 (2009). https://doi.org/10.1007/s12035-009-8083-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-009-8083-y

Keywords

Navigation