Skip to main content
Log in

A bio-inspired method to fabricate the substrate-independent Janus membranes with outstanding floatability for precise oil/water separation

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The lotus leaf has the Janus wettability and outstanding floatability at multiphase interface. The ingenious design on lotus leaf surfaces enlightens us to fabricate the superhydrophobic/superhydrophilic binary cooperative membrane. Making use of the poor permeability of the candle soot, deposition of a layer of candle soot enables to form the Janus membrane with anisotropic wettability on different surfaces. After fixed by the hydrophobic polymer, the superhydrophobic/superhydrophilic binary cooperative membranes are prepared successfully on various membranes, such as filter paper, cotton fabric and copper mesh. The Janus membrane exhibits excellent interfacial floatability at the immiscible oil–water interface as a separator, thus affording high-performance immiscible oil/water separation without applied external pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wen L P, Tian Y and Jiang L 2015 Angew. Chem. Int. Ed. 54 3387

    Article  CAS  Google Scholar 

  2. Lv J Y, Song Y L, Jiang L and Wang J J 2014 ACS Nano 8 3152

    Article  CAS  Google Scholar 

  3. Nosonovsky M and Bhushan B 2007 Nano Lett. 7 2633

    Article  CAS  Google Scholar 

  4. Zhang J P, Wu L, Li B C, Li L X, Stefan S and Aiqin W 2014 Langmuir 30 14292

    Article  CAS  Google Scholar 

  5. Feng L, Li S H, Li Y S, Li H J, Zhang L J, Zhai J et al 2002 Adv. Mater. 14 1857

    Article  CAS  Google Scholar 

  6. Jiang L, Zhao Y and Zhai J 2004 Angew. Chem. Int. Ed. 43 4338

    Article  CAS  Google Scholar 

  7. McHale G, Shirtcliffe N J, Aqil S, Perry C C and Newton M I 2004 Phys. Rev. Lett. 93 036102

    Article  CAS  Google Scholar 

  8. Otten A and Herminghaus S 2004 Langmuir 20 2405

    Article  CAS  Google Scholar 

  9. Savage N 2015 Nature 519 S7

    Article  CAS  Google Scholar 

  10. Darmanin T and Guittard F 2015 Mater. Today 18 273

    Article  CAS  Google Scholar 

  11. Callies M and Quéré D 2005 Soft Matter 1 55

    Article  CAS  Google Scholar 

  12. Cheng Y-T and Rodak D E 2005 Appl. Phys. Lett. 86 144101

    Article  CAS  Google Scholar 

  13. Cheng Y T, Rodak D E, Angelopoulos A and Gacek T 2005 Appl. Phys. Lett. 87 194112

    Article  CAS  Google Scholar 

  14. Zhang J H, Wang J M, Zhao Y, Xu L, Gao X F, Zheng Y M et al 2008 Soft Matter 4 2232

    Article  CAS  Google Scholar 

  15. Liu M J, Wang S T and Jiang L 2017 Nat. Rev. Mater. 2 36

    Article  CAS  Google Scholar 

  16. Darmanin T and Guittard F 2014 J. Mater. Chem. A 2 16319

    Article  CAS  Google Scholar 

  17. Wong T S, Kang S H, Tang S K Y, Smythe E J, Hatton B D, Grinthal A et al 2011 Nature 477 443

    Article  CAS  Google Scholar 

  18. Deng X, Mammen L, Butt H-J and Vollmer D 2012 Science 335 67

    Article  CAS  Google Scholar 

  19. Liu Y M, Chen J W, Guo D W, Moyuan C and Lei J 2015 ACS Appl. Mater. Interfaces 7 13645

    Article  CAS  Google Scholar 

  20. Sasmal A K, Mondal C, Sinha A K, Gauri S S, Pal J, Aditya T et al 2014 ACS Appl. Mater. Interfaces 6 22034

    Article  CAS  Google Scholar 

  21. Liu N, Cao Y Z, Lin X, Chen Y N, Feng L and Wei Y 2014 ACS Appl. Mater. Interfaces 6 12821

    Article  CAS  Google Scholar 

  22. Facio D S and Mosquera M J 2013 ACS Appl. Mater. Interfaces 5 7517

    Article  CAS  Google Scholar 

  23. Feng L, Zhang Z Y, Mai Z H, Ma Y M, Liu B Q, Jiang L et al 2004 Angew. Chem. Int. Ed. 43 2012

    Article  CAS  Google Scholar 

  24. Zhu Y Z, Wang D, Jiang L and Jin J 2014 NPG Asia Mater. 5 e101

    Article  CAS  Google Scholar 

  25. Liu K S and Jiang L 2011 Nanoscale 3 825

    Article  CAS  Google Scholar 

  26. Fan C J, Luo M K, Li S, Zhang H H, Yang Z H and Liu Z 2019 Energies 12 626

    Article  CAS  Google Scholar 

  27. Ishizaki T and Saito N 2010 Langmuir 26 9749

    Article  CAS  Google Scholar 

  28. Fan C J, Li S, Elsworth D, Han J and Yang Z H 2020 Energy Sci. Eng. 8 1015

    Article  Google Scholar 

  29. Xu W J, Song J L, Sun J, Lu Y and Yu Z Y 2011 ACS Appl. Mater. Interfaces 3 4404

    Article  CAS  Google Scholar 

  30. Cheng Q F, Li M Z, Zheng Y M, Su B, Wang S T and Jiang L 2011 Soft Matter 7 5948

    Article  CAS  Google Scholar 

  31. Zhao Y Y, Yu C M, Lan H, Cao M Y and Jiang L 2017 Adv. Funct. Mater. 27 1701466

    Article  CAS  Google Scholar 

  32. Ju J, Bai H, Zheng Y M, Zhao T Y, Fang R C and Jiang L 2012 Nat. Commun. 3 1247

    Article  CAS  Google Scholar 

  33. Li K, Ju J, Xue Z, Ma J, Feng L, Gao S et al 2013 Nat. Commun. 4 2276

    Article  CAS  Google Scholar 

  34. Zheng Y M, Bai H, Huang Z B, Tian X L, Nie F Q, Zhao Y et al 2010 Nature 463 640

    Article  CAS  Google Scholar 

  35. Bai H, Tian X L, Zheng Y M, Ju J, Zhao Y and Jiang L 2010 Adv. Mater. 22 5521

    Article  CAS  Google Scholar 

  36. Wang Z C, Yang J L, Song S Y, Guo J, Zheng J F, Sherazi T A et al 2020 Chem. Commun. 56 12045

    Article  CAS  Google Scholar 

  37. Peng Y, He Y X, Yang S, Ben S, Cao M Y, Liu K S et al 2015 Adv. Funct. Mater. 25 5967

    Article  CAS  Google Scholar 

  38. Ju J, Xiao K, Yao X, Bai H and Jiang L 2013 Adv. Mater. 25 5937

    Article  CAS  Google Scholar 

  39. Zheng Y M, Gao X F and Jiang L 2007 Soft Matter 3 178

    Article  CAS  Google Scholar 

  40. Tian X L, Jin H, Sainio J, Ras R H A and Ikkala O 2014 Adv. Funct. Mater. 24 6023

    Article  CAS  Google Scholar 

  41. Wang Z C, Song S Y, Yang J L, Liu X Q, Sherazi T A, Li S H et al 2020 J. Membr. Sci. 601 117954

    Article  CAS  Google Scholar 

  42. Hou L L, Wang N, Man X K, Cui Z M, Wu J, Liu J C et al 2019 ACS Nano 13 4124

    Article  CAS  Google Scholar 

  43. Cao M Y, Xiao J S, Yu C M, Li K and Jiang L 2015 Small 11 4379

    Article  CAS  Google Scholar 

  44. Zhao Y, Wang H X, Zhou H and Lin T 2016 Small 13, https://doi.org/10.1002/smll.201601070

  45. Wang Z C, Liu X Q, Guo J, Sherazi T A, Zhang S B and Li S H 2019 Chem. Commun. 55 14486

    Article  CAS  Google Scholar 

  46. Hu R J, Wang N, Hou L L, Cui Z M, Liu J C, Li D M et al 2019 J. Mater. Chem. A 7 124

    Article  CAS  Google Scholar 

  47. Zhang J C, Yang Y, Zhang Z C, Wang P P and Wang X 2014 Adv. Mater. 26 1071

    Article  CAS  Google Scholar 

  48. Gu J C, Xiao P, Chen J, Zhang J W, Huang Y J and Chen T 2014 ACS Appl. Mater. Interfaces 6 16204

    Article  CAS  Google Scholar 

  49. Wang Z J, Wang Y and Liu G J 2016 Angew. Chem. Int. Ed. 55 1291

    Article  CAS  Google Scholar 

  50. Gu J C, Xiao P, Chen J, Liu F, Huang Y J, Li G Y et al 2014 J. Mater. Chem. A 2 15268

    Article  CAS  Google Scholar 

  51. Wang Z C, Li Y G, Li S H, Guo J and Zhang S B 2018 Chem. Commun. 54 10954

    Article  CAS  Google Scholar 

  52. Chen J W, Liu Y M, Guo D W, Cao M Y and Jiang L 2015 Chem. Commun. 51 11872

    Article  CAS  Google Scholar 

  53. Wang Z C, Yao J, Li Z Q, Yang K, Guo J, Zhang S B et al 2018 J. Membr. Sci. 566 161

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Funding Project of the Education Department of Liaoning Province (LJ2020QNL002), the Development of Scientific and Technological Project of the Jilin Province (No. 20160519017JH), and Chinese Academy of Sciences—Wego Group High-Tech Research & Development Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhecun Wang.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (AVI 446 KB)

Supplementary file2 (AVI 534 KB)

Supplementary file3 (DOCX 995 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Yang, J., Song, S. et al. A bio-inspired method to fabricate the substrate-independent Janus membranes with outstanding floatability for precise oil/water separation. Bull Mater Sci 44, 153 (2021). https://doi.org/10.1007/s12034-021-02405-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02405-6

Keywords

Navigation