Skip to main content
Log in

Phase transitions of liquid crystal confined in electrospun polymer nanofibres

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Phase behaviour as well as phase transitions of \(4'\)-pentyl-4-biphenylcarbonitrile (5CB) liquid crystal (LC) confined in an amorphous polymer matrix of electrospun nanofibres were investigated. The nanofibres were fabricated from simple monoaxial electrospinning using 5CB/polymer mixtures as well as coaxial electrospinning, where the polymer solution and neat 5CB constituted the shell- and core-forming fluids, respectively. The 5CB was found to be miscible with polystyrene (PS) and poly(4-vinyl pyridine) (P4VP). This was evident from the sharp drop in the glass transition temperature (\(T_{\mathrm{g}}\)) of PS and P4VP in their mixtures with 5CB. Hence, the phase transitions of 5CB were completely suppressed in its mixture with PS and P4VP in electrospun nanofibres as ascertained from DSC and polarized optical microscopy measurements. However, the electrospun nanofibres composed of poly(vinyl pyrrolidone) (PVP) and 5CB showed phase-separated morphology. The phase-separated morphology was unambiguously characterized using SEM and TEM measurements. Furthermore, the phase separation resulted in 5CB exhibiting its liquid crystalline characteristics. However, the radial constraint of the nanofibres led to the formation of small-sized 5CB domains with limited spatial connectivity, which resulted in deviation from the known phase-transition characteristics of 5CB. It was also observed that the inherent orientation of the nanofibres favours the nematic to crystalline transition in the blend nanofibres. The present study gives new insight and understanding about phase behaviour of LC in electrospun polymer fibre and has technological relevance for the design of LC-based flexible fibrous components with tunable optical, thermal and dielectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sohn J, Hong W-K, Choi S, Coles H, Welland M, Cha S et al 2014 Materials 7 2044

    Article  Google Scholar 

  2. Blinov L M 2011 Structure and properties of liquid crystals (Dordrecht, The Netherlands: Springer). Available from: https://doi.org/10.1007/978-90-481-8829-1

  3. Singh S 2000 Phys. Rep. 324 107

    Article  CAS  Google Scholar 

  4. Hamley I W, Castelletto V and Parras P 2006 Phys. Rev. E 74 020701

    Article  CAS  Google Scholar 

  5. Li L, Salamończyk M, Shadpour S, Zhu C, Jákli A and Hegmann T 2018 Nat. Commun. 9. Available from: http://www.nature.com/articles/s41467-018-03160-9

  6. Dhara P, Bhandaru N, Das A and Mukherjee R 2018 Sci. Rep. 8. Available from: http://www.nature.com/articles/s41598-018-25504-7

    Article  CAS  Google Scholar 

  7. Ryu S H and Yoon D K 2016 Liq. Cryst. 43 1951

    Article  CAS  Google Scholar 

  8. Steinhart M, Zimmermann S, Göring P, Schaper A K, Gösele U, Weder C et al 2005 Nano Lett. 5 429

    Article  CAS  Google Scholar 

  9. Grigoriadis C, Duran H, Steinhart M, Kappl M, Butt H-J and Floudas G 2011 ACS Nano 5 9208

    Article  CAS  Google Scholar 

  10. Bertocchi M J, Ratchford D C, Casalini R, Wynne J H and Lundin J G 2018 J. Phys. Chem. C 122 16964

    Article  CAS  Google Scholar 

  11. Ahn W, Kim C Y, Kim H and Kim S C 1992 Macromolecules 25 5002

    Article  CAS  Google Scholar 

  12. Hori H, Urakawa O and Adachi K 2003 Polym. J. 35 721

    Article  CAS  Google Scholar 

  13. Patwardhan A A and Belfiore L A 1988 Polym. Eng. Sci. 28 916

    Article  CAS  Google Scholar 

  14. Dutta D, Fruitwala H, Kohli A and Weiss R A 1990 Polym. Eng. Sci. 30 1005

    Article  CAS  Google Scholar 

  15. Riccardi C C, Borrajo J, Williams R J J, Siddiqi H M, Dumon M and Pascault J P 1998 Macromolecules 31 1124

    Article  CAS  Google Scholar 

  16. Filip D, Simionescu C and Macocinschi D 2001 J. Serbian Chem. Soc. 66 153

    Article  CAS  Google Scholar 

  17. Yonezawa J, Martin S M, Macosko C W and Ward M D 2004 Macromolecules 37 6424

    Article  CAS  Google Scholar 

  18. Sohn E-H, Lee M and Song K 2013 Macromol. Res. 21 234

    Article  CAS  Google Scholar 

  19. Villeneuve-Faure C, Le Borgne D, Ventalon V, Seguy I, Moineau-Chane Ching K I and Bedel-Pereira E 2017 J. Chem. Phys. 147 014701

    Article  CAS  Google Scholar 

  20. Liang H-L, Enz E, Scalia G and Lagerwall J 2011 Mol. Cryst. Liq. Cryst. 549 69

    Article  CAS  Google Scholar 

  21. Kye Y, Kim C and Lagerwall J 2015 J. Mater. Chem. C 3 8979

    Article  CAS  Google Scholar 

  22. Kim D K, Hwang M and Lagerwall J P F 2013 J. Polym. Sci. Part B: Polym. Phys. 51 855

  23. Toan D Q, Ozaki R and Moritake H 2014 Jpn. J. Appl. Phys. 53 01AE03

  24. Wang J, Jákli A and West J L 2016 ChemPhysChem 17 3080

    Article  CAS  Google Scholar 

  25. Lagerwall J P F, McCann J T, Formo E, Scalia G and Xia Y 2008 Chem. Commun. 42 5420

    Article  Google Scholar 

  26. Song W, Liu D, Prempeh N and Song R 2017 Biomacromolecules 18 3273

    Article  CAS  Google Scholar 

  27. Enz E, La Ferrara V and Scalia G 2013 ACS Nano 7 6627

  28. Enz E, Baumeister U and Lagerwall J P F 2009 Beilstein J. Org. Chem. 5. Available from: http://www.beilstein-journals.org/bjoc/content/5/1/58

  29. Smith G W 1994 Mol. Cryst. Liq. Cryst. Sci. Tech. Mol. Cryst. Liq. Cryst. 239 63

    Article  Google Scholar 

  30. Wei W, You D and Xiong H 2017 Macromolecules 50 7844

    Article  CAS  Google Scholar 

  31. Hanemann T, Haase W, Svoboda I and Fuess H 1995 Liq. Cryst. 19 699

    Article  CAS  Google Scholar 

  32. Mansaré T, Decressain R, Gors C and Dolganov V K 2002 Mol. Cryst. Liq. Cryst. 382 97

    Article  Google Scholar 

  33. Lebovka N, Melnyk V, Mamunya Y, Klishevich G, Goncharuk A and Pivovarova N 2013 Phys. E Low-Dimens. Syst. Nanostruct. 52 65

    Article  CAS  Google Scholar 

  34. Araya K and Iwasaki K 2003 Mol. Cryst. Liq. Cryst. 392 49

    Article  CAS  Google Scholar 

  35. Arras M M L, He B and Jandt K D 2017 Polymer 127 15

    Article  CAS  Google Scholar 

  36. Tseng T-C and Kuo S-W 2018 Molecules 23 2242

    Article  Google Scholar 

  37. Li L, Jiang Z, Xu J and Fang T 2014 J. Appl. Polym. Sci. 131 40304

    Google Scholar 

Download references

Acknowledgements

This research was supported by a Grant from SERB, Department of Science and Technology, India (EMR_2017_001675).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhanu Nandan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shankar, A., Pal, S., Srivastava, R. et al. Phase transitions of liquid crystal confined in electrospun polymer nanofibres. Bull Mater Sci 43, 176 (2020). https://doi.org/10.1007/s12034-020-2083-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-2083-y

Keywords

Navigation