Skip to main content

Advertisement

Log in

CdSiO3:Fe3+ nanophosphors: structural and luminescence properties

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

CdSiO3:Fe3+ (1–9 mol%) nanophosphor was prepared by the propellant combustion technique. The powder X-ray diffraction result shows the formation of highly crystalline nanophosphor monoclinic phase. The average particle size was calculated using Scherrer’s formula and WH plots were found in the range of 22–42 nm. The field emission scanning electron microscope and transmission electron microscope pictures of the particle showed agglomerated, highly porous, lots of voids, irregular shape and uneven in size. Fourier transform infrared and Raman spectroscopy were recorded to investigate the nature of chemical bonds. Energy bandgaps (Eg) of the prepared samples were estimated using Wood and Tauc relation from the optical UV–Visible spectroscopy and found to be ~5.2 eV. Photoluminescence studies of (1–9 mol%) CdSiO3:Fe3+ nanophosphor shows an intense emission peak at 715 nm when excited at 361 nm. The energy transfer of the excited Fe3+ ions at higher concentrations are due to concentration quenching. As incorporation concentration of Fe3+ increases, 4T1 (4G) → 6A1 transition dominates and the emission intensity increases. Commission International De I’Eclairage and coordinated colour temperature of the phosphors were well located in red region. Therefore, Fe3+-doped CdSiO3 nanophosphor was highly useful for the preparation of red component of WLED’s and solid-state display applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Lei B F, Li B, Wang X J and Li W L 2006 J. Lumin. 118 173

    Article  CAS  Google Scholar 

  2. Zhang L, Hong G Y and Sun X L 1999 Chin. Chem. Lett. 10 799

    CAS  Google Scholar 

  3. Barboza C A, Henriques J M, Albuquerque E L, Caetano E W S, Freire V N and da Costa L A O 2009 Chem. Phys. Lett. 480 273

    Article  CAS  Google Scholar 

  4. Onani M O and Dejene F B 2014 Physica B: Condens. Matter 439 137

    Article  CAS  Google Scholar 

  5. Fawad U, Oh M, Park H, Kim S and Kim H J 2014 J. Alloys Compd. 610 281

    Article  CAS  Google Scholar 

  6. Yu Teng, Jiajia Zhou, Said Nasir Khisro, Shifeng Zhou and Jianrong Qiu 2014 Mater. Chem. Phys. 147 772

    Article  CAS  Google Scholar 

  7. Patil K C, Aruna S T and Ekambaram S 1997 Curr. Opin. Solid State Mater. Sci. 457 158

    Article  Google Scholar 

  8. Manohara B M, Nagabhushana H, Thyagarajan K, Prashantha S C, Nagabhushana B M, Shivakumara C et al 2015 Mater. Res. Express 2 025005

    Article  CAS  Google Scholar 

  9. Premkumar H B, Sunitha D V, Nagabhushana H, Sharma S C, Nagabhushana B M, Rao J L et al 2012 Spectrochim. Acta A Mol. Biomol. Spectra 96 154

    Article  CAS  Google Scholar 

  10. Moreira E, Henriques J M, Azevedo D L, Caetano E W S, Freire V N and Albuquerque E L 2011 J. Solid State Chem. 1844 921

    Article  Google Scholar 

  11. Garces H F, Senturk B S and Padture N P 2014 Scr. Mater. 76 29

    Article  CAS  Google Scholar 

  12. Kloprogge J T and Frost R L 1999 Spectrochim. Acta A 55 1505

    Article  Google Scholar 

  13. Burgio L and Clark R J H 2001 Spectrochim. Acta A 57 1491

    Article  CAS  Google Scholar 

  14. Manohara B M, Nagabhushana H, Thyagarajan K, Prasad B D, Prashantha S C, Sharma S C et al 2015 J. Lumin. 161 247

    Article  CAS  Google Scholar 

  15. Manning P G 1966 Can. Mineral. 148 677

    Google Scholar 

  16. Orton J W 1998 An introduction to transition group ions in crystals (London: Liffe Book Ltd.)

    Google Scholar 

  17. Pedro S S, Nakamura O, Barthem R B and Sosman L P 2009 J. Fluoresc. 19 211

    Article  CAS  Google Scholar 

  18. Blasse G 1969 Philips. Res. Rep. 24 131

    CAS  Google Scholar 

  19. Van Uitert L G 1967 J. Electrochem. Soc. 114 1048

    Article  Google Scholar 

  20. Valerio E G, Macedo S, Abreu C M and Silva R S 2013 J. Solid State Chem. 200 54

    Article  Google Scholar 

  21. Schanda J and Danyi M 1977 Color Res. Appl. 2 161

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B M Manohara.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soppin, K., Manohara, B.M. CdSiO3:Fe3+ nanophosphors: structural and luminescence properties. Bull Mater Sci 44, 49 (2021). https://doi.org/10.1007/s12034-020-02332-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02332-y

Keywords

Navigation