Skip to main content

Advertisement

Log in

AC conductivity and broadband dielectric spectroscopy of a poly(vinyl chloride)/poly(ethyl methacrylate) polymer blend

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Alternating-current (ac) conductivity and dielectric relaxation behaviour of a poly(vinyl chloride)/poly(ethyl methacrylate) polymer blend have been investigated intensively in a frequency range from \(1 \times 10^{-1}\) to \(2 \times 10^{7}\) Hz through a temperature range from 300 to 393 K. The variation of \(\sigma _{\mathrm{ac}}\) of pure and polyblend samples showed a plateau region at high temperature and low frequency and this plateau region is decreased with decreasing temperature. Values of the exponent n are less than unity indicative of the correlated barrier hopping for conduction. The values of the exponent n are used to calculate the binding energy (\(W_{\mathrm{m}})\) of the charge carriers. The investigation of the frequency dependence of \(\varepsilon ^{\prime }\) for pure and polyblend samples showed a dielectric dispersion. The high values of dielectric constant at a low frequency and high temperature are attributed to the effects of space charge due to the electrode polarization. The complex electric modulus (M*) of pure and polyblend samples has been investigated. It is found that the real part of the complex electric modulus, \(M^{\prime }\) is increased non-linearly as the frequency increased and reached the steady state at higher frequencies for all samples. On the other hand, the imaginary part of the complex electric modulus, \(M^{\prime \prime }\) is characterized by a relaxation peak. The different modes of relaxation, such as interfacial polarization and dipolar relaxation, are detected in low and high frequency regions in the variation plot of \(M^{\prime \prime }\) against frequency. The activation energy values of both interfacial polarization and \(\upalpha \)-relaxation are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Balart R, Lopez J, Garcia D and Salvador M D 2005 Eur. Polym. J. 41 2150

    Article  CAS  Google Scholar 

  2. Qi R, Chen Z and Zhou C 2005 Polymer 46 4098

    Article  CAS  Google Scholar 

  3. Patil D S, Shaikh J S, Dalavi D S, Kalagi S S and Patil P S 2011 Mater. Chem. Phys. 128 449

    Article  CAS  Google Scholar 

  4. Mohan K R, Achari V B S, Rao V V R N and Sharma A K 2011 Polym. Test. 30 881

    Article  Google Scholar 

  5. Kowalonek J 2016 Polym. Deg. Stab. 133 367

    Article  CAS  Google Scholar 

  6. Sim L N, Majid S R and Arof A K 2012 Vib. Spectrosc. 58 57

    Article  CAS  Google Scholar 

  7. Han H S, Kang H R, Kim S W and Kim H T 2002 J. Power Sources 112 461

    Article  CAS  Google Scholar 

  8. Fahmy T and Ahmed M T 2001 Polym. Test. 20 477

    Article  CAS  Google Scholar 

  9. Fahmy T and Ahmed M T 2000 Polym. Int. 49 669

    Article  CAS  Google Scholar 

  10. Fahmy T and Ahmed M T 1999 Polym. Test. 18 589

    Article  Google Scholar 

  11. Migahed M D, Ishra M, El-Khodary A and Fahmy T 1993 Polym. Test. 12 335

    Article  CAS  Google Scholar 

  12. Fahmy T and Ahmed M T 2011 J. Korean Phys. Soc. 58 1654

    Article  CAS  Google Scholar 

  13. Fahmy T 2007 Polym. Plast. Technol. Eng. 46 7

    Article  CAS  Google Scholar 

  14. Migahed M D, Ishra M, Fahmy T and Barakat A 2004 J. Phys. Chem. Solids 65 1121

    Article  CAS  Google Scholar 

  15. Shukla J P, Manohar R, Shukla P and Gupta M 1999 Proceedings of 13th International Conference on Dielectric Liquids (ICDL ’99), Nm, Japan, July 20–25

  16. Jonscher A K 1977 Nature 267 673

    Article  CAS  Google Scholar 

  17. Woo H J, Majid S R and Arof A K 2012 Mater. Chem. Phys. 134 755

    Article  CAS  Google Scholar 

  18. Howell F S, Bose R A, Macedo P B and Moynihan C T 1974 J. Phys. Chem. 78 639

    Article  CAS  Google Scholar 

  19. Paquin L, St-Onge H and Wertheimer M R 1982 IEEE Trans. Electr. Insul. EI-17 399

    Article  Google Scholar 

  20. Fahmy T 2001 J. Polym. Mater. 50 109

    Article  CAS  Google Scholar 

  21. Jonscher A K 1990 IEEE Electr. Insul. 6 16

    Article  Google Scholar 

  22. More S, Dhokne R and Moharil S 2017 Mater. Res. Express 4 055302

    Article  Google Scholar 

  23. Pike G E 1972 Phys. Rev. B 6 1572

    Article  CAS  Google Scholar 

  24. Jung W H 2000 J. Phys. D: Appl. Phys. 33 444

    Article  CAS  Google Scholar 

  25. Passaras G C, Gatos K G, Karahaliou P K, Georga S N, Krontiras C A and Krger-Kocsis J 2007 Express Polym. Lett1 837

    Article  Google Scholar 

  26. Psarras G C, Manolakaki E and Tsangaris G M 2003 Compos. A: Appl. Sci. Manuf. 34 1187

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Fahmy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fahmy, T., Elzanaty, H. AC conductivity and broadband dielectric spectroscopy of a poly(vinyl chloride)/poly(ethyl methacrylate) polymer blend. Bull Mater Sci 42, 220 (2019). https://doi.org/10.1007/s12034-019-1906-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1906-1

Keywords

Navigation