Skip to main content
Log in

Structural and optical properties of synthesized poly(methyl methacrylate) (PMMA) and lanthanide \(\upbeta \)-diketonate complexes incorporated electrospun PMMA nanofibres for optical devices

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Abstract

Fabrication of electrospun nanofibres is the glittering area of research because of their flexible characteristics and numerous applications in almost all walks of life and technology. Poly(methyl methacrylate) (PMMA) is one of the significant and interested synthetic polymers in the recent research because of their characteristic properties like higher environmental stability, resistance to attack by moulds and enzymes, commercial availability, easiness to handle, etc. In the present study, pristine PMMA nanofibres with diameters of 60–150 nm with 109 nm as the most distributed one are prepared by an electrospinning method using a binary solvent mixture. An enhancement in the intensity of visible photoluminescence emission is observed in PMMA nanofibres embedded with samarium and neodymium \(\upbeta \)-diketonate complexes. The morphological incorporation of samarium and neodymium \(\upbeta \)-diketonate complexes in PMMA nanofibres and material composition of the samples are examined by high resolution electron microscopy analyses. The amorphous nature and molecular bonding of pure PMMA nanofibres and incorporated fibre complexes are elucidated through structural and molecular analyses. The supreme optical absorptions and reemissions of samarium and neodymium \(\upbeta \)-diketonate complexes embedded in the pure PMMA fibre sample in the visible region indicate not only their application in lighting or display devices, but also as active materials in organic light emitting diodes for new era curved/rolled display devices.

Graphical abstract

Ultrafine poly(methyl methacrylate) (PMMA) nanofibres and those incorporated with the prepared lanthanide complexes are also prepared by an electrospinning method. An enhancement in the intensity of visible photoluminescence emission is observed in PMMA nanofibres embedded with samarium and neodymium \(\upbeta \)-diketonate complexes. The supreme optical absorptions and reemissions of samarium and neodymium \(\upbeta \)-diketonate complexes embedded in the pure PMMA fibre sample in the visible region indicate not only their application in lighting or display devices but also as active materials in organic light emitting diodes for new era curved/rolled display devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Huang Z M, Zhang Y Z, Kotaki M and Ramakrishna S 2003 Compos. Sci. Technol. 63 2223

    Article  CAS  Google Scholar 

  2. Bhardwaj N and Kundu S C 2010 Biotechnol. Adv. 28 325

    Article  CAS  Google Scholar 

  3. Frenot A and Chronakis I S 2003 Curr. Opin. Colloid Interface Sci. 8 64

    Article  CAS  Google Scholar 

  4. Lee C H, Chiang C L and Liu S J 2013 Sep. Purif. Technol. 118 737

    Article  CAS  Google Scholar 

  5. Li H F, Li G M, Chen P, Sun W B and Yan P F 2012 Spectrochim. Acta A 97 197

    Article  CAS  Google Scholar 

  6. Lenaerts P, Driesen K, Deun R V and Binnemans K 2005 Chem. Mater. 17 2148

    Article  CAS  Google Scholar 

  7. Basak D, Karan S and Biswanath M 2006 Chem. Phys. Lett. 420 115

    Article  CAS  Google Scholar 

  8. Chahar M, Ali V and Kumar S 2012 Int. J. Sci. Res. Publ. 2 1

    Google Scholar 

  9. Binnemans K 2005 in Handbook on the physics and chemistry of rare earths K A Gschneidner, J C G Bünzli and V K Pecharsky (eds) (Leuven, Belgium: Elsevier) p 107

  10. Ali U, Karima K J A and Buang N A 2015 Polym. Rev. 55 678

    Article  CAS  Google Scholar 

  11. Vincent T, Mukhopadhyay M and Wattal P K 2009 J. Supercrit. Fluids 48 230

    Article  CAS  Google Scholar 

  12. Otway D J and Rees W S 2000 Coord. Chem. Rev. 210 279

    Article  CAS  Google Scholar 

  13. Dong H, Strawhecker K E, Snyder J F, Orlicki J A, Reiner R S and Rudie A W 2012 Carbohydr. Polym. 87 2488

    Article  CAS  Google Scholar 

  14. Li W, Yan P, Hou G, Li H and Li G 2013 RSC Adv. 3 18173

    Article  CAS  Google Scholar 

  15. Li M, Zhang Z, Cao T, Sun Y and Liang P 2012 Mater. Res. Bull. 47 321

    Article  CAS  Google Scholar 

  16. Henry A C, Tutt T J, Galloway M, Davidson Y Y, McWhorter C S, Soper S A et al 2000 Anal. Chem. 72 5331

    Article  CAS  Google Scholar 

  17. Adati R D, Pavinatto F J, Monteiro J H S K, Davolos M R, Jafelicci M and Oliveira O N 2012 New J. Chem. 36 1978

    Article  CAS  Google Scholar 

  18. Ghosh D and Luwang M N 2015 RSC Adv. 5 47131

    Article  CAS  Google Scholar 

  19. Amali Roselin A, Anandhan N, Ravi G, Mummoorthi M and Marimuthu T 2014 Int. J. ChemTech Res. 6 5315

    Google Scholar 

  20. El-Ansary A L and Abdel-Kader N S 2012 Int. J. Inorg. Chem. 2012 1

    Article  Google Scholar 

  21. Venkatesan N, Kamaraj P, Devikala S and Arthanareeswari M 2015 Rasāyan J. Chem. 8 321

    CAS  Google Scholar 

  22. Yu C, Zhang Z, Liu L, Feng W, Lü X, Wong W et al 2014 Inorg. Chem. Commun. 49 30

    Article  CAS  Google Scholar 

  23. Hodgson G K, Impellizzeri S, Hallett-Tapley G L and Scaiano J C 2014 RSC Adv. 1 1

    Google Scholar 

  24. Dong X and Hong G 2005 J. Mater. Sci. Technol. 21 555

    CAS  Google Scholar 

  25. Binnemans K 2009 Chem. Rev. 109 4283

    Article  CAS  Google Scholar 

  26. Deng Z, Bai F, Xing Y, Xing N and Xu L 2013 Open J. Inorg. Chem. 3 76

    Article  CAS  Google Scholar 

  27. Andreiadis E S 2009 Chemical sciences (Grenoble I: Universite Joseph-Fourier) p 1

  28. Sun L N, Yu J, Zhang H, Meng Q, Ma E, Peng C et al 2007 Microporous Mesoporous Mater. 98 156

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank UGC for financial assistance, KSCSTE for providing fund for the electrospinning machine and MATCH! 2 software developers for providing online facilities for comparing XRD patterns.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Tomlal Jose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Philip, P., Thomas, P., Jose, E.T. et al. Structural and optical properties of synthesized poly(methyl methacrylate) (PMMA) and lanthanide \(\upbeta \)-diketonate complexes incorporated electrospun PMMA nanofibres for optical devices. Bull Mater Sci 42, 218 (2019). https://doi.org/10.1007/s12034-019-1893-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1893-2

Keywords

Navigation