Skip to main content

Advertisement

Log in

Role of nano-carbon additives in lead-acid batteries: a review

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Development in lead (Pb)-acid batteries (LABs) is an important area of research. The improvement in this electrochemical device is imperative as it can open several new fronts of technological advancement in different sectors like automobile, telecommunications, renewable energy, etc. Since the rapid failure of a LAB due to Pb sulphation under partial-state-of-charging, electrode grid corrosion and water loss are some major obstructions in its advancement. The doping of various carbon forms into the negative active material of an electrode has been suggested to be effective at improving the storage capacity and cyclic life of LABs by suppressing irreversible sulphation. This report is an attempt to focus on different theories related to the working mechanism of carbon and to summarize the investigation results observed by various researchers regarding the significant role of nano-carbon additives in LABs. On the basis of that, we tried to compare their performance along with the discussion on the best possible additive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. The advanced lead acid battery consortium 2016–2018. Available at: www.alabc.org/publications/overview-of-the-alabc-1618-program (accessed on 22 December 2016)

  2. Economic-outlook, the global automotive market, Sept 14 2014. Available at: http://www.eulerhermes.com/mediacenter/Lists/mediacenter-documents/Economic-Outlook-The-global-Automotive-market-Sept14.pdf (accessed on 02 December 2016)

  3. Budde-Meiwes H, Drillkens J, Lunz B, Muennix J, Rothgang S, Kowal J et al 2013 Proc. Inst. Mech. Eng., Part D 227 761

    CAS  Google Scholar 

  4. Garche J, Moseley P T and Karden E 2015 In: B Scrosati, J Garche and W Tillmetz (eds) Advances in battery technologies for electric vehicles (Cambridge: Elsevier Ltd) p 75

  5. Xu J, Thomas H R, Francis R W, Lum K R, Wang J and Liang B 2008 J. Power Sources 177 512

    CAS  Google Scholar 

  6. Endo M, Kim Y A, Hayashi T, Nishimura K, Matusita T, Miyashita K et al 2001 Carbon 39 1287

    CAS  Google Scholar 

  7. Shiomi M, Funato T, Nakamura K, Takahashi K and Tsubota M 1997 J. Power Sources 64 147

    CAS  Google Scholar 

  8. Ohmae T, Hayashi T and Inoue N 2003 J. Power Sources 116 105

    CAS  Google Scholar 

  9. Boden D P, Loosemore D V, Spence M A and Wojcinski T D 2010 J. Power Sources 195 4470

    CAS  Google Scholar 

  10. Lam L T, Louey R, Haigh N P, Lim O V, Vella D G, Phyland C G et al 2007 J. Power Sources 174 16

    CAS  Google Scholar 

  11. Spence M A, Boden D P and Wojcinski T D 2009 ALABC research project designation C1/1/2.1A Progress Report 4

  12. Fernández M, Valenciano J, Trinidad F and Muñoz N 2010 J. Power Sources 195 4458

    Google Scholar 

  13. Ebner E, Burow D, Börger A, Wark M, Atanassova P and Valenciano J 2013 J. Power Sources 239 483

    CAS  Google Scholar 

  14. Understanding the function and performance of carbon-enhanced lead-acid batteries, Sandia Report 2011. Available at: http://prod.sandia.gov/techlib/access-control.cgi/2011/118263.pdf (accessed on 09 September 2016)

  15. Kozawa A, Oho H, Sano M, Brodd D and Brodd R 1999 J. Power Sources 80 12

    CAS  Google Scholar 

  16. Moseley P T, Nelson R F and Hollenkamp A F 2006 J. Power Sources 157 3

    CAS  Google Scholar 

  17. Banerjee A, Saha D, Row T N G and Shukla A K 2013 Bull. Mater. Sci. 36 163

    CAS  Google Scholar 

  18. Saravanan M, Sennu P, Ganesan M and Ambalavanan S 2012 J. Electrochem. Soc. 160 A70

    Google Scholar 

  19. Pavlov D (ed) 2011 Lead-acid batteries: science and technology (Netherlands: Elsevier Science)

    Google Scholar 

  20. Pavlov D and Kapkov N 1990 J. Electrochem. Soc. 137 16

    CAS  Google Scholar 

  21. Jung J, Zhang L and Zhang J (eds) 2015 Lead-acid battery technologies: fundamentals, materials, and applications (New York: Taylor & Francis Group)

    Google Scholar 

  22. Pavlov D and Iliev V 1981 J. Power Sources 7 153

    Google Scholar 

  23. Lam L T, Haigh N P, Phyland C G and Urban A J 2004 J. Power Sources 133 126

    CAS  Google Scholar 

  24. Fernández M, Trinidad F, Valenciano J and Sánchez A 2006 J. Power Sources 158 1149

    Google Scholar 

  25. Moseley P T, Garche J, Parker C D and Rand D A J (eds) 2004 Valve-regulated lead-acid batteries (Netherlands: Elsevier Science)

    Google Scholar 

  26. Soria M L, Trinidad F, Lacadena J M, Sánchez A and Valenciano J 2007 J. Power Sources 168 12

    CAS  Google Scholar 

  27. Moseley P T 2004 J. Power Sources 127 27

    CAS  Google Scholar 

  28. Soria M L, Hernàndez J C, Valenciano J and Sànchez A 2005 J. Power Sources 144 473

    CAS  Google Scholar 

  29. Sugumaran N, Everill P, Swogger S W and Dubey D P 2015 J. Power Sources 279 281

    CAS  Google Scholar 

  30. Sawai K, Funato T, Watanabe M, Wada H, Nakamura K, Shiomi M et al 2006 J. Power Sources 158 1084

    CAS  Google Scholar 

  31. Pavlov D and Nikolov P 2012 J. Electrochem. Soc. 159 A1215

    CAS  Google Scholar 

  32. McNally T and Klang J 2003 J. Power Sources 116 47

    CAS  Google Scholar 

  33. Ruetschi P 2004 J. Power Sources 127 33

    CAS  Google Scholar 

  34. Boden D, Arias J and Fleming F A 2001 J. Power Sources 95 277

    CAS  Google Scholar 

  35. Dietz H, Niepraschk H, Wiesener K, Garche J and Bauer J 1993 J. Power Sources 46 191

    CAS  Google Scholar 

  36. Pavlov D, Petkova G and Rogachev T 2008 J. Power Sources 175 586

    CAS  Google Scholar 

  37. Yamaguchi Y, Shiota M, Nakayama Y, Hirai N and Hara S 2000 J. Power Sources 85 22

    CAS  Google Scholar 

  38. Cooper A and Moseley P T 2003 J. Power Sources 113 200

    CAS  Google Scholar 

  39. Moseley P T, Rand D A J and Monahov B 2012 J. Power Sources 219 75

    CAS  Google Scholar 

  40. Moseley P T, Hutchison J L, Wright C J, Bourke M A M, Hill R I and Rainey V S 1983 J. Electrochem. Soc. 130 829

    CAS  Google Scholar 

  41. Pavlov D, Rogachev T, Nikolov P and Petkova G 2009 J. Power Sources 191 58

    CAS  Google Scholar 

  42. Atanassova P, Pasquier A D, Oljaca M, Nikolov P, Matrakova M and Pavlov D 2014 International conference on lead-acid batteries, LABAT, p 5

  43. Catherino H A, Feres F F and Trinidad F 2004 J. Power Sources 129 113

    CAS  Google Scholar 

  44. Moseley P T 2009 J. Power Sources 191 134

    CAS  Google Scholar 

  45. Pavlov D, Nikolov P and Rogachev T 2010 J. Power Sources 196 5155

    Google Scholar 

  46. Carbon-carbon bonds Hybridization, Handout 2011. Available at: http://www.physik.fu-berlin.de/einrichtungen/ag/ag-reich/lehre/Archiv/ss2011/docs/Gina_Peschel-Handout.pdf (accessed on 09 September 2016)

  47. Xiang J, Ding P, Zhang H, Wu X, Chen J and Yang Y 2013 J. Power Sources 241 150

    CAS  Google Scholar 

  48. Marom R, Ziv B, Banerjee A, Cahana B, Luski S and Aurbach D 2015 J. Power Sources 296 78

    CAS  Google Scholar 

  49. Banerjee A, Ziv B, Levi E, Shilina Y, Luski S and Aurbach D 2016 J. Electrochem. Soc. 163 A1518

    CAS  Google Scholar 

  50. Banerjee A, Ziv B, Shilina Y, Levi E, Luski S and Aurbach D 2017 ACS Appl. Mater. Interfaces 9 3634

    CAS  Google Scholar 

  51. Logeshkumar S and Manoharan R 2014 Electrochim. Acta 144 147

    CAS  Google Scholar 

  52. Yeung K K, Zhang X, Kwok S C T, Ciucci F and Yuen M M F 2015 RSC Adv. 5 71314

    CAS  Google Scholar 

  53. Calábek M, Micka K, Křivák P and Bača P 2006 J. Power Sources 158 864

    Google Scholar 

  54. Pavlov D, Nikolov P and Rogachev T 2010 J. Power Sources 195 4435

    CAS  Google Scholar 

  55. Micka K, Calábek M, Bača P, Křivák P, Lábus R and Bilko R 2009 J. Power Sources 191 154

    CAS  Google Scholar 

  56. Shukla A K, Banerjee A, Ravikumar M K and Jalajakshi A 2012 Electrochim. Acta 84 165

    Google Scholar 

  57. Jaiswal A and Chalasani S C 2015 J. Energy Storage 1 15

    Google Scholar 

  58. Pavlov D and Nikolov P 2013 J. Power Sources 242 380

    CAS  Google Scholar 

  59. Kumar R, Kumari S, Mathur R B and Dhakate S R 2015 Appl. Nanosci. 5 53

    CAS  Google Scholar 

  60. Swogger S W, Everill P, Dubey D P and Sugumaran N 2014 J. Power Sources 261 55

    CAS  Google Scholar 

  61. Wissler M 2006 J. Power Sources 156 142

    CAS  Google Scholar 

  62. Shapira R, Nessim G D, Zimrin T and Aurbach D 2013 Energy Environ. Sci. 6 587

    CAS  Google Scholar 

  63. Bullock K R 2010 J. Power Sources 195 4513

    CAS  Google Scholar 

  64. Wong B, Jiang L X, Xue H T, Liu F Y, Jia M, Li J et al 2014 J. Power Sources 270 332

    Google Scholar 

  65. Hariprakash B, Gaffoor S A and Shukla A K 2009 J. Power Sources 191 149

    CAS  Google Scholar 

  66. Liu C, Yu Z, Neff D, Zhamu A and Jang B Z 2010 Nano Lett. 10 4863

    CAS  Google Scholar 

  67. Stoller M D, Park S, Zhu Y, An J and Ruoff R S 2008 Nano Lett. 8 3498

    CAS  Google Scholar 

  68. Ni Z H, Wang H M, Kasim J, Fan H M, Yu T, Wu Y H et al 2007 Nano Lett. 7 2758

    CAS  Google Scholar 

  69. Du X, Skachko I, Barker A and Andrei E Y 2008 Nat. Nanotechnol. 3 491

    CAS  Google Scholar 

  70. Kim H, Abdala A A and Macosko C W 2010 Macromolecules 43 6515

    CAS  Google Scholar 

  71. Cinke M, Li J, Chen B, Cassell A, Delzeit L, Han J et al 2002 Chem. Phys. Lett. 365 69

    CAS  Google Scholar 

  72. Niu C, Sichel E K, Hoch R, Moy D and Tennent H 1997 Appl. Phys. Lett. 70 1480

    CAS  Google Scholar 

  73. Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A et al 2014 Nanoscale Res. Lett. 9 393

    Google Scholar 

  74. Chen T and Dai L 2013 Mater. Today 16 272

    CAS  Google Scholar 

  75. Dai L, Dai L, Chang D W, Baek J and Lu W 2012 Small 8 1130

  76. Frackowiak E, Jurewicz K, Delpeux S and Béguin F 2001 J. Power Sources 97–98 822

    Google Scholar 

  77. Futaba D N, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y et al 2006 Nat. Mater. 5 987

    CAS  Google Scholar 

  78. Lehman J H, Terrones M, Mansfield E, Hurst K E and Meunier V 2011 Carbon 49 2581

    CAS  Google Scholar 

  79. Klingeler R and Sim R B (eds) 2011 Carbon nanotubes for biomedical applications (Berlin: Springer)

    Google Scholar 

  80. Bachtold A, Fuhrer M S, Plyasunov S, Forero M, Anderson E H, Zettl A et al 2000 Phys. Rev. Lett. 84 6082

    CAS  Google Scholar 

  81. Fan Q, Qin Z, Liang X, Li L, Wu W and Zhu M 2010 J. Exp. Nanosci. 5 337

    CAS  Google Scholar 

  82. Grossiord N, Loos J, Regev O and Koning C E 2006 Chem. Mater. 18 1089

    CAS  Google Scholar 

  83. Li X, Wong S Y, Tjiu W C, Lyons B P, Oh S A and He C B 2008 Carbon 46 818

    Google Scholar 

  84. Du J, Zhao L, Zeng Y, Zhang L, Li F, Liu P and Liu C 2010 Carbon 49 1094

    Google Scholar 

  85. Martin-Gallego M, Bernal M M, Hernandez M, Verdejo R and Lopez-Manchado M A 2013 Eur. Polym. J. 49 1347

    CAS  Google Scholar 

  86. Chatterjee S, N\(\ddot{\bar{{\rm u}}}\)esch F A and Chu B T T 2011 Nanotechnology 22 275714

  87. Lam L T and Louey R 2006 J. Power Sources 158 1140

    CAS  Google Scholar 

  88. Furukawa J, Takada T, Monma D and Lam L T 2010 J. Power Sources 195 1241

    CAS  Google Scholar 

  89. Pavlov D 1997 J. Power Sources 64 131

    CAS  Google Scholar 

  90. Hong B, Yu X, Jiang L, Xue H, Liu F, Li J et al 2014 RSC Adv. 4 33574

    CAS  Google Scholar 

  91. Wang F, Hu C, Lian J, Zhou M, Wang K, Yan J et al 2017 RSC Adv. 7 4174

    CAS  Google Scholar 

  92. Li W, Zhou M, Li H, Wang K, Cheng S and Jiang K 2015 Energy Environ. Sci. 8 2916

    CAS  Google Scholar 

  93. Hariprakash B, Bera P, Martha S K, Gaffoor S A, Hegde M S and Shukla A K 2001 Electrochem. Solid State Lett. 4 A23

    CAS  Google Scholar 

  94. Dietz H, Dittmar L, Ohms D, Radwan M and Wiesener K 1992 J. Power Sources 40 175

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Director, National Institute of Technology, Jalandhar (NITJ) for Technical Education Quality Improvement Programme (TEQIP-II) support. The authors would also like to thank Mr. Sudipto Ranjan Dass (DGM-R&D, Luminous Power Technologies, Una (HP), India) for his expertise that significantly assisted this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Mahajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahajan, V., Bharj, R.S. & Bharj, J. Role of nano-carbon additives in lead-acid batteries: a review. Bull Mater Sci 42, 21 (2019). https://doi.org/10.1007/s12034-018-1692-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1692-1

Keywords

Navigation