Skip to main content

Advertisement

Log in

Morphology-controlled ultrafine \(\hbox {BaTiO}_{3}\)-based PVDF–HFP nanocomposite: synergistic effect on dielectric and electro-mechanical properties

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Perovskite-based flexible nanocomposites were realized by dispersing \(\hbox {BaTiO}_{3}\) and modified monodisperse \(\hbox {BaTiO}_{3}\) in PVDF–HFP matrix. \(\hbox {BaTiO}_{3}\) was modified in situ by the addition of carbon solution, which was prepared electrochemically by using graphite rod. Structural characterization revealed that the decrease in tetragonality due to reduction in particle size of modified \(\hbox {BaTiO}_{3}\) than unmodified \(\hbox {BaTiO}_{3}\). The controlled morphology of treated-\(\hbox {BaTiO}_{3}\) nanoparticles was well dispersed in polymer matrix and exhibited effective dielectric constant. High active surface area of modified \(\hbox {BaTiO}_{3}\) suggested strong interfacial polarization, reduced dielectric loss and induced relaxation as compared to PVDF–HFP/BT nanocomposite. The experimental dielectric behaviour was fitted with theoretical Maxwell–Garnet model and composites followed up to 20 wt.% filler. The polarization effect was further proven by electric modulus studies of nanocomposites in broad frequency (0.1 Hz–1 MHz) and temperature (− 40 to \(130{^{\circ }}\hbox {C}\)). The results suggested that the shift in relaxation peaks towards higher frequencies with increase in filler content in polymer matrix. Further, a flexible-pressure sensing device was fabricated and evaluated for real applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Nayak S, Kumar T and Khastgir D 2016 Ceram. Int.  42 14490

    Article  Google Scholar 

  2. Arlt G, Hennings D and With G D 1985 J. Appl. Phys.  58 1619

    Article  Google Scholar 

  3. Nayak S, Sahoo B, Chaki K and Khastgir D 2014 RSC Adv.  4 1212

    Article  Google Scholar 

  4. Haertling G H 1999 J. Am. Ceram. Soc.  82 797

    Article  Google Scholar 

  5. Landeros J O, Yanez C G, Juarez R L, Velasco I D and Pfeiffer H 2012 J. Adv. Ceram.  1 204

    Article  Google Scholar 

  6. Moon J, Suvaci E, Morrone A, Costantino S A and Adair J H 2003 J. Eur. Ceram. Soc.  23 2153

    Article  Google Scholar 

  7. Lin M F, Thakur V K, Tan E J and Lee P S 2011 RSC Adv.  1 576

    Article  Google Scholar 

  8. Yang K, Huang X, Liu F and Jiang P 2013 IEEE international conference on solid dielectrics (ICSD) p 722

  9. Dalle Vacche S D, Oliveira F, Leterrier Y, Michaud V, Damjanovic D and Manson J A E 2014 J. Mater. Sci.  49 4552

    Article  Google Scholar 

  10. Jung H M, Kang J H, Yang S Y, Won J C and Kim Y S 2010 Chem. Mater.  22 450

    Article  Google Scholar 

  11. Tang H, Zhou Z and Sodano H A 2014 ACS App. Mater. Int.  6 5450

    Article  Google Scholar 

  12. Nayak S, Chaki T K and Khastgir D 2014 Ind. Eng. Chem. Res.  53 14982

    Article  Google Scholar 

  13. Yang J, Zhang J, Liang C, Wang M, Zhao P, Liu M et al 2013 ACS App. Mater. Int.  5 7146

    Article  Google Scholar 

  14. Beier C W, Cuevas M A and Brutchey R L 2010 Langmuir  26 5067

    Article  Google Scholar 

  15. Xie L, Huang X, Huang Y, Yang K and Jiang P 2013 ACS App. Mater. Int.  5 1747

    Article  Google Scholar 

  16. Kim P, Jones S C, Hotchkiss P J, Haddock J N, Kippelen B, Marder S R et al 2007 Adv. Mater.  19 1001

    Article  Google Scholar 

  17. Yang K, Huang X, Huang Y, Xie L and Jiang P 2013 Chem. Mater.  25 2327

    Article  Google Scholar 

  18. Dong L, Shi H, Cheng K, Wang Q, Weng W and Han W 2014 Nano Res7 1311

    Article  Google Scholar 

  19. Fu J, Hou Y, Zheng M, Wei Q, Zhu M and Yan H 2015 ACS Appl. Mater. Interf.  7 24480

    Article  Google Scholar 

  20. Wu C, Huang X, Wu X, Yu J, Xie L and Jiang P 2012 Comp. Sci. Tech72 521

    Article  Google Scholar 

  21. Chen Q, Jin L, Weng W, Han G and Du P 2008 Sur. Rev. Lett.  15 19

    Article  Google Scholar 

  22. Niu Y, Yu K, Bai Y and Wang H 2015 IEEE Trans. Ultrason. Ferroelec. Freq. Control  62 108

    Article  Google Scholar 

  23. Li H, He X, Kang Z, Huang H, Liu Y, Liu J et al 2010 Angew. Chem. Int. Ed.  49 4430

    Article  Google Scholar 

  24. Hammer M and Hoffmann M J 1998 J. Elect. Ceram2 75

    Google Scholar 

  25. Rabuffetti F A and Brutchey R L 2012 J. Am. Chem. Soc.  134 9475

    Article  Google Scholar 

  26. Qi J Q, Peng T, Hu Y M, Sun L,Wang Y, Chen W P et al 2011 Nano Sci. Res. Lett.  6 466

    Article  Google Scholar 

  27. Huang T C, Wang M T and Sheu H S 2007 J. Phys. Condens. Mater.  19 1

    Google Scholar 

  28. Dobal P S, Dixit A, Katiyar R S, Yu Z, Guo R and Bhalla A S 2001 J. Appl. Phys.  89 8085

    Article  Google Scholar 

  29. Aepuru R, Kankash S and Panda H S 2016 RSC Adv.  6 32272

    Article  Google Scholar 

  30. Mao Y P, Mao S Y, Ye Z G, Xie Z X and Zheng L S 2010 J. Appl. Phys.  108 014102

    Article  Google Scholar 

  31. Dang Z M, Xu H P and Wang H Y 2007 Appl. Phys. Lett.  90 012901

    Article  Google Scholar 

  32. Fan B H, Zha J W, Wang D R, Zhao J and Dang Z M 2012 Appl. Phys. Lett100 092903

    Article  Google Scholar 

  33. Tian F and Ohki Y 2014 IEEE Trans. Dielec. Elec. Insulat.  21 929

    Article  Google Scholar 

  34. Chanmal C V and Jog J P 2008 Exp. Polym. Lett.  2 294

    Article  Google Scholar 

  35. Aepuru R, Rao B V B, Kale S N and Panda H S 2015 Mater. Chem. Phys167 61

    Article  Google Scholar 

  36. Aepuru R and Panda H S 2016 J. Phys. Chem. C  120 4813

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H S Panda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khiratkar, V., Aepuru, R. & Panda, H.S. Morphology-controlled ultrafine \(\hbox {BaTiO}_{3}\)-based PVDF–HFP nanocomposite: synergistic effect on dielectric and electro-mechanical properties. Bull Mater Sci 41, 107 (2018). https://doi.org/10.1007/s12034-018-1620-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1620-4

Keywords

Navigation