Skip to main content
Log in

Synthesis and characterization of SPIO-loaded PEG-b-PS micelles as contrast agent for long-term nanoparticle-based MRI phantom

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Nanoparticle-based magnetic resonance imaging (MRI) phantom was developed from the suspension of magnetic nanoparticles composing methoxy poly(ethylene glycol)-block-poly(styrene) (PEG-b-PS) micelles and superparamagnetic iron oxide (SPIO) nanoparticles in the core of micelles. The size of SPIO-loaded micelles was determined by dynamic light scattering (DLS) and transmission electron microscopy. Larger-size micelles were found when SPIO loading was increased. The effect of the hydrophobic section of block copolymer on the size of micelles was studied by DLS. Transverse relaxivity was evaluated on both 1.5 and 3 T clinical MRI scanner. Higher SPIO-loading provided higher relaxivity, where the relaxivity of 10% SPIO-loaded PEG(5 kDa)-b-PS(5 kDa) were 144.0 and \(174.0~\hbox {m M}^{-1}~\hbox {s}^{-1}\) for 1.5 and 3 T MRI, respectively. This formulation showed stability over a 10-week period, and the standard deviations of the relaxivities were 3.0 and 8.0% for 1.5 and 3 T MRI, respectively. Thus, SPIO-loaded PEG-b-PS micelles have a potential to be applied as a contrast agent for nanoparticle-based MRI phantom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alústiza Echeverría J M, Castiella A and Emparanza J I 2012 Insights Imaging 3 173

    Article  Google Scholar 

  2. Anderson L J, Holden S, Davis B, Prescott E, Charrier C C, Bunce N H et al 2001 Eur. Heart J. 22 2171

    Article  Google Scholar 

  3. Yoshimura K, Kato H, Kuroda M, Yoshida A, Hanamoto K, Tanaka A et al 2003 Magn. Reson. Med. 50 1011

    Article  Google Scholar 

  4. Vassiliou V S, Heng E L, Gatehouse P D, Donovan J, Raphael C E, Giri S et al 2016 J. Cardiovasc. Magn. Reson. 18 1

    Article  Google Scholar 

  5. Alústiza J M, Emparanza J I, Castiella A, Casado A, Garrido A, Aldazábal P et al 2015 Biomed Res. Int. 2015 Article no. 294024

  6. Ernst O, Rose C, Sergent G and L’Herminé C 1999 Am. J. Roentgenol. 172 1141

    Article  Google Scholar 

  7. Sreeram K J, Nidhin M, Indumathy R and Nair B U 2008 Bull. Mater. Sci. 31 93

    Article  Google Scholar 

  8. Duguet E, Vasseur S, Mornet S, Goglio G, Demourgues A, Portier J et al 2006 Bull. Mater. Sci. 29 581

    Article  Google Scholar 

  9. Puntawee S, Theerasilp M, Reabroi S, Saeeng R, Piyachaturawat P, Chairoungdua A et al 2016 Pharm. Dev. Technol. 21 437

    Google Scholar 

  10. Nasongkla N, Shuai X, Ai H, Weinberg B D, Pink J, Boothman D A et al 2004 Angewandte Chemie—International Edition 43 6323

    Article  Google Scholar 

  11. Blanco E, Kessinger C W, Sumer B D and Gao J 2009 Exp. Biol. Med. 234 123

    Article  Google Scholar 

  12. Ai H, Flask C, Weinberg B, Shuai X, Pagel M D, Farrell D et al 2005 Adv. Mater. 17 1949

    Article  Google Scholar 

  13. Huh K M, Lee S C, Cho Y W, Lee J, Jeong J H and Park K 2005 J. Control. Release 101 59

    Article  Google Scholar 

  14. Theerasilp M, Chalermpanapun P, Ponlamuangdee K, Sukvanitvichai D and Nasongkla N 2017 RSC Adv. 7 11158

    Article  Google Scholar 

  15. Sun S, Zeng H, Robinson D B, Raoux S, Rice P M, Wang S X et al 2004 J. Am. Chem. Soc. 126 273

    Article  Google Scholar 

  16. Jankova K, Chen X, Kops J and Batsberg W 1998 Macromolecules 31 538

    Article  Google Scholar 

  17. Crecelius A C, Becer C R, Knop K and Schubert U S 2010 J. Polym. Sci. Pol. Chem. 48 4375

    Article  Google Scholar 

  18. Kharisov B I, Dias H V R, Kharissova O V, Vázquez A, Peña Y and Gómez I 2014 RSC Adv. 4 45354

    Article  Google Scholar 

  19. Theerasilp M and Nasongkla N 2013 J. Microencapsul. 30 390

    Article  Google Scholar 

  20. Rutnakornpituk M, Meerod S, Boontha B and Wichai U 2009 Polymer 50 3508

    Article  Google Scholar 

  21. Ditsch A, Laibinis P E, Wang D I C and Hatton T A 2005 Langmuir 21 6006

    Article  Google Scholar 

  22. Golas P L, Louie S, Lowry G V, Matyjaszewski K and Tilton R D 2010 Langmuir 26 16890

    Article  Google Scholar 

  23. Lim J, Yeap S P, Che H X and Low S C 2013 Nanoscale Res. Lett. 8 1

    Article  Google Scholar 

  24. Aqil A, Vasseur S, Duguet E, Passirani C, Benoît J P, Roch A et al 2008 Euro. Polym. J. 44 3191

    Article  Google Scholar 

  25. Shuai X, Merdan T, Schaper A K, Xi F and Kissel T 2004 Bioconjugate Chem. 15 441

    Article  Google Scholar 

  26. Astafieva I, Khougaz K and Eisenberg A 1995 Macromolecules 28 7127

    Article  Google Scholar 

  27. Cheng D, Hong G, Wang W, Yuan R, Ai H, Shen J et al 2011 J. Mater. Chem. 21 4796

    Article  Google Scholar 

  28. Guardia P, Labarta A and Batlle X 2011 J. Phys. Chem. C 115 390

    Article  Google Scholar 

  29. Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi J S et al 2006 Nano Lett. 6 2427

    Article  Google Scholar 

  30. Chen H, Yeh J, Wang L, Khurshid H, Peng N, Wang A Y et al 2010 Nano Res. 3 852

    Article  Google Scholar 

  31. Pöselt E, Kloust H, Tromsdorf U, Janschel M, Hahn C, Maßlo C et al 2012 ACS Nano 6 1619

    Article  Google Scholar 

  32. Duan H, Kuang M, Wang X, Wang Y A, Mao H and Nie S 2008 J. Phys. Chem. C 112 8127

    Article  Google Scholar 

  33. Zhang C, Xie X, Liang S, Li M, Liu Y and Gu H 2012 Magn. Reson. Med. 8 996

    Google Scholar 

  34. Arbab A S, Wilson L B, Ashari P, Jordan E K, Lewis B K and Frank J A 2005 NMR Biomed. 18 383

    Article  Google Scholar 

  35. Shapiro M G, Atanasijevic T, Faas H, Westmeyer G G and Jasanoff A 2006 Magn. Reson. Imaging 24 449

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Mahidol University, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norased Nasongkla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Theerasilp, M., Sungkarat, W. & Nasongkla, N. Synthesis and characterization of SPIO-loaded PEG-b-PS micelles as contrast agent for long-term nanoparticle-based MRI phantom. Bull Mater Sci 41, 42 (2018). https://doi.org/10.1007/s12034-018-1556-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1556-8

Keywords

Navigation