Skip to main content
Log in

Ionic conductivity and diffusion coefficient of barium-chloride-based polymer electrolyte with poly(vinyl alcohol)–poly(4-styrenesulphonic acid) polymer complex

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A composite polymer electrolyte comprising poly(vinyl alcohol)–poly(4-styrenesulphonic acid) with barium chloride dihydrate (\(\hbox {BaCl}_{2}{\cdot } 2\hbox {H}_{2}\hbox {O}\)) salt complex has been synthesized following the usual solution casting. The ionic conductivity of polymer electrolyte was analysed by impedance spectroscopy. The highest room temperature (at 30\({^{\circ }}\)C) conductivity evaluated was 9.38 \(\times \) 10\(^{-6}\) S cm\(^{-1}\) for 20 wt% loading of \(\hbox {BaCl}_{2}\) in the polymer electrolyte. This has been referred to as the optimum conducting composition. The temperature-dependent ionic conductivity of the polymer electrolyte exhibits the Arrhenius relationship, which represents the hopping of ions in polymer composites. Cation and anion diffusion coefficients are evaluated using the Trukhan model. The transference number and enhanced conductivity imply that the charge transportation is due to ions. Therefore this polymer electrolyte can be further studied for the development of electrochemical device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Saikia D, Kumar A, Singh F and Avasthi D K 2006 J. Phys. D: Appl. Phys.  39 4208

    Article  Google Scholar 

  2. Wang G, Zhou X, Li M, Zhang J, Kang J, Lin Y et al 2004 Mater. Res. Bull.  39 2113

    Article  Google Scholar 

  3. Sun B, Mindemark J, Edstrom K and Brandell D 2014 Solid State Ion.  262 738

    Article  Google Scholar 

  4. Ahm J H, Wang G X, Liu H K and Dou S X 2003 J. Power Sources  119 422

    Google Scholar 

  5. Sosa G H, Eckstein R, Tekoglu S, Becker T, Mathies F, Lemmer U et al 2013 Org. Electron.  14 2223

    Article  Google Scholar 

  6. Seo J A, Koh J H, Roh D K and Kim J H 2009 Solid State Ion.  180 998

    Article  Google Scholar 

  7. Lin C W, Huang Y F and Kannan M 2007 J. Power Sources  171 340

    Article  Google Scholar 

  8. Yang C C, Lin S J and Wu G M 2005 Mater. Chem. Phys.  92 251

    Article  Google Scholar 

  9. Prajapati G K and Gupta P N 2009 Nucl. Instrum. Methods Phys. Res. Sec. B  267 3328

  10. Park J T, Koh J H, Roh D K, Shul Y G and Kim J H 2011 Int. J. Hydrogen Energy  36 1820

    Article  Google Scholar 

  11. Ayşe A, Kurtuluş G and Ayhan B 2012 J. Polym. Res. 19 22

    Article  Google Scholar 

  12. Santhosh P, Gopalan A, Vasudevan T and Lee K P 2006 Mater. Res. Bull. 41 1023

    Article  Google Scholar 

  13. Vijayakumar G, Karthick S N, SathiyaPriya A R, Ramalingam S and Subramania A 2008 Solid State Electrochem.  12 1135

    Google Scholar 

  14. Dissanayake M A K L, Bandara L R A K, Karaliyadda L H, Jayathilaka P A R D and Bokalawala R S P 2006 Solid State Ion.  177 343

    Article  Google Scholar 

  15. Puguan J M C, Chinnappan A, Kostjuk S V and Kim H 2015 Mater. Res. Bull. 69 104

    Article  Google Scholar 

  16. Hodge R M, Edward G H and Simon G P 1996 Polymer  37 1371

    Article  Google Scholar 

  17. Natrajan R, Subramanian S, Moni P, Shunmugavel K and Sanjeeviraja C 2013 Bull. Mater. Sci. 36 333

    Article  Google Scholar 

  18. Hema M, Selvasekeranpandian S, Hirankumar G, Sakunthala A, Arunkumar D and Nithya H 2009 J. Phys. Chem. Solids  70 1098

    Article  Google Scholar 

  19. Bushkova O V, Popov S E, Yaroslavtseva T V, Zhukovsky V M and Nikiforov A E 2008 Solid State Ion.  178 1817

    Article  Google Scholar 

  20. Ibrahim S, Ahmad R and Johan M R 2012 J. Lumin.  132 147

    Article  Google Scholar 

  21. Al-Gaashani R, Radiman S, Tabet N and Daud R 2012 Mater. Sci. Eng. B  177 462

  22. Ahmed F A H 2016 Bull. Mater. Sci. 39 209

    Article  Google Scholar 

  23. Nasir N H A, Chan C H, Kammer H W, Sim L H and Yahya M Z A 2010 Macromol. Symp.  290 46

    Article  Google Scholar 

  24. Vargas M A, Vargas R A and Mellander B E 2000 Electrochem. Acta 45 1399

    Article  Google Scholar 

  25. Martos A M, Sanchez J Y, Varez A and Levenfeld B 2015 Polym. Test.  45 185

    Article  Google Scholar 

  26. Singh P K, Kim K W, Nagarale R K and Rhee H W 2009 J. Phys. D: Appl. Phys. 42 125101

    Article  Google Scholar 

  27. Huang X, Xianguo M, Gao J, Tan B, Yang K, Wang G et al 2012 Solid State Ion.  215 7

    Article  Google Scholar 

  28. Kuan W F, Remy R, Mackay M E and Thomas H 2015 RSC Adv. 5 12597

    Article  Google Scholar 

  29. Fahmi E M, Ahmad A, Nazeri N N M, Hamzah H, Razali H and Rahman M Y A 2012 Int. J. Electrochem. Sci. 7 5798

    Google Scholar 

  30. Rajendran S, Babu R S and Sivakumar P 2007 J. Power Sources 170 460

    Article  Google Scholar 

  31. Chandra A, Agrawal R C and Mahipal Y K 2009 J. Phys. D: Appl. Phys. 42 135107

    Article  Google Scholar 

  32. Soresen T S and Compan V 1995 J. Chem. Soc. Faraday Trans. 91 4235

    Article  Google Scholar 

  33. Munar A, Andrio A, Iserte R and Compan V 2011 J. Non-Cryst. Solids  357 3064

    Article  Google Scholar 

  34. Edman L, Ferry A and Oradd G 2002 Phys. Rev. E  65 042803

    Article  Google Scholar 

  35. Karan N K, Pradhan D K, Thomas R, Natesan B and Katiyar R S 2008 Solid State Ion.  179 689

    Article  Google Scholar 

  36. Wagner J B and Wagner C J 1957 J. Chem. Phys. 26 1597

    Article  Google Scholar 

  37. Reddy C V S, Sharma A K and Narasimha Rao V V R 2003 J. Power Sources 114 338

  38. Klein R J, Zhang S, Dou S, Jones B H, Colby R H and Runt J 2006 J. Chem. Phys. 124 144903

    Article  Google Scholar 

Download references

Acknowledgements

We are highly grateful to the Naval Research Board, Defense Research and Development Organization, New Delhi, for providing electrical characterization facility under Project Number 259/Mat./11-12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girish M Joshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, M., Joshi, G.M. & Ghosh, N.N. Ionic conductivity and diffusion coefficient of barium-chloride-based polymer electrolyte with poly(vinyl alcohol)–poly(4-styrenesulphonic acid) polymer complex. Bull Mater Sci 40, 655–666 (2017). https://doi.org/10.1007/s12034-017-1430-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1430-0

Keywords

Navigation