Skip to main content
Log in

Ultrasonic and structural features of some borosilicate glasses modified with heavy metals

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A quaternary glass system \(\hbox {Na}_{1.4}\hbox {B}_{2.8}\hbox {Si}_{x}\hbox {Pb}_{0.3-x}\hbox {O}_{5.2+x}\), with 0 \(\le \) x \(\le \) 0.3, was prepared and studied by Fourier transform infrared spectroscopy, density and ultrasonic techniques to debate the issue of the role of \(\hbox {SiO}_{2}\) in the structure of lead alkali borate glasses. The results indicate that \(\hbox {SiO}_{2}\) generates an abundance of bridging oxygen atoms, [\(\hbox {BO}_{4}\)] and [\(\hbox {SiO}_{4}\)] structural units and changes the bonds B–O–B and Pb–O–B to Si–O–Si and B–O–Si. The latter bonds have higher bond strength and higher average force constant than the former bonds. Therefore, the glass structure becomes contracted and compacted, which decreases its molar volume and increases its rigidity. This concept was asserted from the increase in the ultrasonic velocity, Debye temperature and elastic moduli with the increase of \(\hbox {SiO}_{2}\) content. The present compositional dependence of the elastic moduli was interpreted in terms of the electron–phonon anharmonic interactions and the polarization of \(\hbox {Si}^{4+}\) cation. A good correlation was observed between the experimentally determined elastic moduli and those computed according to the Makishima–Mackenzie model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dimitriv V V, Kim S H, Yoko T and Sakka S 1993 J. Ceram. Soc. Jpn. 101 59

    Article  Google Scholar 

  2. Kamitsos E I and Kasakassides M A 1989 Phys. Chem. Glasses 30 19

    Google Scholar 

  3. Edelman I S, Ivanova O S, Petrakovskaja E A, Velikanov D A, Tarasov I A, Zubavichus Y V et al 2015 J. Alloys Compd. 624 60

    Article  Google Scholar 

  4. Pisarska J, Lisiecki R, Ryba-Romanowski W, Dominiak-Dzik G, Goryczka T, Grobelny Ł et al 2011 J. Non-Cryst. Solids 357 1228

    Article  Google Scholar 

  5. Sears V F 1992 Neutrons News 3 26

    Article  Google Scholar 

  6. Marzouk M A, Ibrahim S and Hamd Y M 2014 J. Mol. Struct. 1076 576

    Article  Google Scholar 

  7. Rajaramakrishna R, Saiyasombat C, Anavekar R V and Jain H 2014 J. Non-Cryst. Solids 406 107

    Article  Google Scholar 

  8. El-Diasty F, Moustafa F A, Abdel-Wahab F A, Abdel-Baki M and Fayad A M 2014 J. Alloys Compd. 605 157

    Article  Google Scholar 

  9. Saddeek Y, Mohamed G, Shokry H, Mostafa A and Abd Elfadeel G 2015 J. Non-Cryst. Solids 419 110

    Article  Google Scholar 

  10. Farouk M, Abd El-Maboud A, Ibrahim M, Ratep A and Kashif I 2015 Spectrochim. Acta A149 338

    Article  Google Scholar 

  11. Takaishi T, Jin J, Uchino T and Yoko T 2000 J. Am. Ceram. Soc. 83 2543

    Article  Google Scholar 

  12. Fayon F, Bessada C, Massiot D, Farnan I and Coutures J P 1998 J. Non-Cryst. Solids 232–234 403

    Article  Google Scholar 

  13. Yoko T, Tadanaga K, Miyaji F and Sakka S 1992 J. Non-Cryst. Solids 150 192

    Article  Google Scholar 

  14. Meera B N, Sood A K, Chandrabhas N and Ramakrishna J 1990 J. Non-Cryst. Solids 126 224

    Article  Google Scholar 

  15. Lucacel R C and Ardelean I 2007 J. Non-Cryst. Solids 353 2020

    Article  Google Scholar 

  16. Saddeek Y 2009 J. Alloys Compd. 467 14

    Article  Google Scholar 

  17. Singh D, Singh K, Singh G, Mohan S, Arora M and Sharma G 2008 J. Phys. Condens. Matter 20 075228

    Article  Google Scholar 

  18. Worrell C A and Henshall J 1978 J. Non-Cryst. Solids 29 283

    Article  Google Scholar 

  19. Doweidar H and Saddeek Y 2010 J. Non-Cryst. Solids 356 1452

    Article  Google Scholar 

  20. Fayon F, Landron C, Sakurai K, Bessada C and Massiot D 1999 J. Non-Cryst. Solids 243 39

    Article  Google Scholar 

  21. Saddeek Y, Gaafar M and Bashier S 2010 J. Non-Cryst. Solids 356 1089

    Article  Google Scholar 

  22. Saini A, Khanna A, Michaelis V, Kroeker S, Gonzalez F and Hernandez D 2009 J. Non-Cryst. Solids 355 2323

    Article  Google Scholar 

  23. El-Damrawi G, Muller-Warmuth W, Doweidar H and Gohar I A 1992 J. Non-Cryst. Solids 146 137

    Article  Google Scholar 

  24. Wood J, Prabakar S, Mueller K and Pantano C 2004 J. Non-Cryst. Solids 349 276

    Article  Google Scholar 

  25. McKeown D, Gan H and Pegg I 2005 J. Non-Cryst. Solids 351 3826

    Article  Google Scholar 

  26. Witkowska A, Rybicki J and Cicco A 2005 J. Non-Cryst. Solids 351 380

    Article  Google Scholar 

  27. Manara D, Grandjean A and Neuville D R 2009 Am. Min. 94 777

    Article  Google Scholar 

  28. El-Alaily N and Mohamed R 2003 Mater. Sci. Eng. B 98 193

    Article  Google Scholar 

  29. Rajendran V, Palanivelu N, El-Batal H A, Khalifa F A and Shaft N A 1999 Acoust. Lett. 23 113

    Google Scholar 

  30. Hirashima H, Arari D and Yoshida T 1985 J. Am. Ceram. Soc. 68 486

    Article  Google Scholar 

  31. Wananuruksawong R, Jinawath S, Padipatvuthikul P and Wasanapiarnpong T 2011 IOP Conf. Ser. Mater. Sci. Eng. 18 192010

    Article  Google Scholar 

  32. Wen H and Tanner P 2015 J. Alloys Compd. 625 328

    Article  Google Scholar 

  33. Yang J K, Wang T S, Zhang G F, Peng H B, Chen L, Zhang M L et al 2013 Nucl. Instrum. Methods Phys. Res. B 307 541

    Article  Google Scholar 

  34. Inaba S, Fujino S and Morinaga K 1999 J. Am. Ceram. Soc. 82 3501

    Article  Google Scholar 

  35. Makishima A and Mackenzie J D 1973 J. Non-Cryst. Solids 12 35

    Article  Google Scholar 

  36. Rao T G V M, Rupesh Kumar A, Neeraja K, Veeraiah N and Rami Reddy M 2014 Spectrochim. Acta A 118 744

    Article  Google Scholar 

  37. Baccaro S, Sharma G, Thind K S, Singh D and Cecillia A 2007 Nucl. Instrum. Methods Phys. Res. B 260 613

    Article  Google Scholar 

  38. Kaur R, Singh S and Pandey O P 2014 J. Mol. Struct. 1060 251

    Article  Google Scholar 

  39. Lide D 2004 CRC handbook of chemistry and physics 84th edn (Boca Raton, Fl: CRC Press)

    Google Scholar 

  40. Wells A 1975 Structural inorganic chemistry 4th edn (Oxford: Clarendon Press)

    Google Scholar 

  41. Doweidar H, El-egili K and Abd El-Maksoud S 2000 J. Phys. D: Appl. Phys. 33 2532

    Article  Google Scholar 

  42. Bootjomchai C, Laopaiboon R, Pencharee S and Laopaiboon J 2014 J. Non-Cryst. Solids 388 37

    Article  Google Scholar 

  43. Saddeek Y 2004 Physica B 344 163

    Article  Google Scholar 

  44. Hwa L G, Chao W C and Szu S P 2002 J. Mater. Sci. 37 3423

    Article  Google Scholar 

  45. Makishima A and Mackenzie J 1975 J. Non-Cryst. Solids 17 147

    Article  Google Scholar 

  46. Rocherulle J, Ecolivet C, Poulain M, Verdier P and Laurent Y 1989 J. Non-Cryst. Solids 108 187

    Article  Google Scholar 

  47. Saddeek Y B, Kaid M A and Ebeid M R 2014 J. Non-Cryst. Solids 387 30

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser B Saddeek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saddeek, Y.B. Ultrasonic and structural features of some borosilicate glasses modified with heavy metals. Bull Mater Sci 40, 545–553 (2017). https://doi.org/10.1007/s12034-017-1421-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1421-1

Keywords

Navigation