Skip to main content
Log in

Influence of moisture absorption on the flexural properties of composites made of epoxy resin reinforced with low-content iron particles

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this work, the effect of moisture absorption on the mechanical properties of particulate composite materials is studied. Moisture absorption constitutes a main parameter affecting the thermomechanical behaviour of composites, since it causes plasticization of the polymer matrix with a concurrent swelling. In the present work, the influence of water absorption on the flexural properties of particle-reinforced composites was thoroughly investigated. It was found that during the process of moisture absorption there exists a variation of the flexural properties closely related to the degradation of the mechanical behaviour of the composite, as well as the percentage amount of moisture absorbed. Experiments were carried out with composite made of epoxy resin reinforced with low-content iron particles. The variation of ultimate stress, breaking strain, deflection, elastic modulus and Poisson ratio due to water absorption was examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Mc Kague E L, Reynolds J D and Halkias J E 1975 Life Assur. Compos. Struct. AFML Tech. Rep. 1 51

    Google Scholar 

  2. Fried N 1967 Proceedings of the fifth symposium on naval structural mechanics (Philadelphia: Pergamon Press) p 813

  3. Hertz J 1970 Proc. Soc. Aerospace Mater. Process Eng. 3 9

    Google Scholar 

  4. Browning C E and Whitney J M 1974 Fillers and reinforcements for plastics, advances in chemistry series, No. 134 (USA: Amer. Chem. Soc.) p 137

  5. Browning C E and Hartness J T 1974 Proc. Third ASTM STP 546 284

    Google Scholar 

  6. Adamson M J 1980 J. Mater. Sci. 15 1736

    Article  Google Scholar 

  7. Landal R F and Smith T L 1961 Am. Rocket Soc. J. 31 599

    Google Scholar 

  8. Kwei T K and Kumins C A 1964 J. Appl. Polym. Sci. 8 1483

    Article  Google Scholar 

  9. Turner S 1965 Appl. Mat. Res. 10 10

  10. Van Der Wal C W, Bree H W and Schwarzl F R 1965 J. Appl. Polym. Sci. 9 2145

    Google Scholar 

  11. Kumins C A and Roterman J 1963 J. Polym. Sci. A: Polym. Chem. 1 527

    Google Scholar 

  12. Papanicolaou G C, Paipetis S A and Theocaris P S 1977 J. Appl. Polym. Sci. 21 689

    Article  Google Scholar 

  13. Theocaris P S, Papanicolaou G C and Sideridis E P 1982 J. Reinf. Plast. Compos. 1 50

    Google Scholar 

  14. Strella S and Erhart P F 1969 J. Appl. Polym. Sci. 13 1373

    Article  Google Scholar 

  15. Morgan R J and O’ Neal J E 1978 Polym. Plast. Technol. Eng. 10 49

    Article  Google Scholar 

  16. Manson J A and Chin E H 1973 J. Polym. Sci. C 1331 654

    Google Scholar 

  17. Mc Kague E L, Halkias J E and Reynolds J D 1975 J. Comput. Mater. 10 49

    Google Scholar 

  18. Shen C H and Springer G S 1976 J. Comput. Mater. 10 2

    Article  Google Scholar 

  19. Mehta B S, Dibenetto A T and Kardos J L 1977 J. Appl. Polym. Sci. 21 3111

    Article  Google Scholar 

  20. James D I, Norman R H and Stone M H 1968 Plastics Polym. 36 21

  21. Ashbee K H, Frank F C and Wyatt R C 1967 Proc. R Soc. A 300 415

    Article  Google Scholar 

  22. Steel D J 1967 Trans. Plast. Inst. 35 429

    Google Scholar 

  23. Theocaris P S, Papanicolaou G C and Kontou E A 1983 J. Appl. Polym. Sci. 28 3145

  24. Theocaris P S, Kontou E A and Papanicolaou G C 1983 Colloid Polym. Sci. 261 394

    Article  Google Scholar 

  25. Weitsman Y J and Guo Y J 2002 Compos. Sci. Technol. 62 889

  26. Hiel C and Adamson M 1986 Compos. Struct. 6 243

    Article  Google Scholar 

  27. Bera T, Mula S, Ray P K and Ray B C 2007 J. Reinf. Plast. Compos. 26 725

    Article  Google Scholar 

  28. Blikstad M, Siöblom P O W and Johannesson T R 1984 J. Compos. Mater. 18 32

    Article  Google Scholar 

  29. Apicella A, Egiziano L, Nicolais L and Tucci V 1988 J. Mater. Sci. 23 729

    Article  Google Scholar 

  30. Apicella A and Nicolais L 1981 Ind. Eng. Chem. Prod. Res. Dev. 20 138

    Article  Google Scholar 

  31. Verpoest I and Springer G S 1988 J. Reinf. Plast. Compos. 7 2

  32. Cai L W and Neitsan Y 1994 J. Compos. Mater. 29 130

    Article  Google Scholar 

  33. Woo M and Piggott M R 1987 J. Compos. Technol. Res. 9 162

    Article  Google Scholar 

  34. Weitsman Y J 1987 Int. J. Solids Struct. 23 1003

    Article  Google Scholar 

  35. Xiang Z D and Jones F R 1997 Compos. Sci. Technol. 57 451

    Article  Google Scholar 

  36. Park C H and McManus H L 1996 Compos. Sci. Technol. 56 1209

    Article  Google Scholar 

  37. Popineau S, Rondeau-Mouro C, Sulpice-Gaillet C and Shanahan M E R 2005 Polymer 46 10733

  38. Ozdemir T and Mengeloglu F 2008 Int. J. Mol. Sci. 9 2559

    Article  Google Scholar 

  39. Athijayamania A, Thiruchitrambalamb M, Natarajana U and Pazhanivel B 2009 Mater. Sci. Eng. A 517 344

    Article  Google Scholar 

  40. Fiorelli J, Curtoloa D, Barreroa N, Savastano Jr H, de Jesus Agnolon Pallonea E and Johnson R 2012 Ind. Crops Prod. 40 69

    Article  Google Scholar 

  41. Tagliavia G, Porfiri M and Gupta N 2012 Composites Part B 43 115

    Article  Google Scholar 

  42. Singh A, Singh S and Kumar A 2013 Int. J. Mater. Sci. Appl. 2 157

    Google Scholar 

  43. Bhaskar J and Singh V 2013 J. Mater. Environ. Sci. 4 113

    Google Scholar 

  44. Hamim S and Singh R 2014 Int. Scholarly Res. Notices 2014 Article ID 489453 doi:10.1155/2014/489453

  45. Hossain M R, Hossain M F and Islam M A 2014 J. Sci. Res. 6 431

    Google Scholar 

  46. Pandian A, Vairavan M, Jappes W, Jebbas T and Uthayakumar M 2014 J. Compos. 2014 Article ID 587980

  47. Pan Y and Zhong Z 2015 Mech. Mater. 85 7

    Article  Google Scholar 

  48. Le Grand P G, Kambour R P and Haaf W R 1972 J. Polym. Sci. A2 1565

    Google Scholar 

  49. Thomas N A and Windle H 1978 Polymer 19 253

    Google Scholar 

  50. Nicolais L E 1978 J. Membr. Sci. 3 231

    Article  Google Scholar 

  51. Apicella A, Nicolais L, Astarita G and Drioli E 1981 Polym. Eng. Sci. 21 18

    Article  Google Scholar 

  52. Apicella A, Nicolais L, Astarita G and Drioli E 1979 Polymer 20 1143

    Article  Google Scholar 

  53. Wieth W R and Sladek K J 1965 Colloid Sci. 20 1014

    Article  Google Scholar 

  54. Springer G C, Sanders B A and Tung R W 1980 J. Comput. Mater. 14 213

    Article  Google Scholar 

  55. Schrager M 1978 J. Appl. Polym. Sci. 10 2379

    Article  Google Scholar 

  56. Nicolais L and Mashelkar R A 1976 J. Appl. Polym. Sci. 20 561

    Article  Google Scholar 

  57. Smith T L 1961 Rubber Chem. Technol. 34 123

    Article  Google Scholar 

  58. Bueche F 1960 J. Appl. Polym. Sci. 4 107

    Article  Google Scholar 

  59. Ziegel K D, Frensdorff H K and Fogiel A W 1969 J. Appl. Polym. Sci. 13 867

  60. Galperin I, Arnheim W and Kwei T W 1965 J. Appl. Polym. Sci. 9 3215

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Sideridis.

Appendix

Appendix

1.1 Tensile stress at failure

Schrager formula [55]

$$\begin{aligned} \sigma _\mathrm{c} =\sigma _\mathrm{m} e^{- r\cdot U_\mathrm{f}}, \end{aligned}$$
(11)

where \(\sigma _\mathrm{c}\) and \(\sigma _\mathrm{m}\) denote the composite and the matrix stress at failure, respectively, and r is a constant equal to 2.66, obtained from experiments

Nicolais–Mashelkar formula [56]

$$\begin{aligned} \sigma _\mathrm{c} =\sigma _\mathrm{m} \left( 1-1.21 U_\mathrm{f}^{2/3} \right) . \end{aligned}$$
(12)

1.2 Tensile strain at failure

Bueche–Nielsen formula [58]

$$\begin{aligned} \varepsilon _\mathrm{c} =\varepsilon _\mathrm{m} \left( 1- U_\mathrm{f}^{1/3} \right) , \end{aligned}$$
(13)

where \(\varepsilon _\mathrm{m}\) and \(\varepsilon _\mathrm{c}\) denote the matrix and the composite strain at failure, respectively.

Ziegel formula [59]

$$\begin{aligned} \varepsilon _\mathrm{c} =\varepsilon _\mathrm{m} \left[ { 1- U_\mathrm{f} (1+\Delta r/R)^{3}} \right] , \end{aligned}$$
(14)

where \(\Delta r\) is the increase of the radius R of the particles due to existence of an interphase.

Smith formula [57]

$$\begin{aligned} \varepsilon _\mathrm{c} =\varepsilon _\mathrm{m} \left( 1-1.06 U_\mathrm{f}^{1/3} \right) . \end{aligned}$$
(15)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sideridis, E., Venetis, J., Kyriazi, E. et al. Influence of moisture absorption on the flexural properties of composites made of epoxy resin reinforced with low-content iron particles. Bull Mater Sci 40, 805–817 (2017). https://doi.org/10.1007/s12034-017-1419-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1419-8

Keywords

Navigation