Skip to main content
Log in

On the origins of the anisotropic mechanical behaviour of extruded AA2017 aluminium alloy

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This paper presents some experimental investigations about the origins of the anisotropic behaviour in cyclic loadings of AA2017 aluminium alloy. In the first step, fatigue damage evolutions were quantified for controlled proportional cyclic loadings in axial and shear directions. In this stage, the aim was to confirm the anisotropic mechanical behaviour, which has recently been revealed. To this end, several models of fatigue damage quantification were used. After a comparative study between the obtained results we confirmed the anisotropic nature of the used material. In the second step, microstructural investigations were performed in order to understand the origins of the anisotropic mechanical behaviour. We used scanning electron microscopy to analyse phases and precipitates in the transversal and the longitudinal sections. It was deduced that the structure and the morphology of these entities are responsible for the anisotropic behaviour of the used aluminium alloy. Moreover, the results obtained using Kikushi diagrams, poles figure and inverse poles figures have also confirmed these conclusions. Indeed, these results have shown great differences in crystallographic texture of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. Bois-Brochu A, Blais C, Goma F A T, Boselli J and Brochu M 2014 Mater. Sci. Eng. A 62 597

    Google Scholar 

  2. Immarigeon J P, Holt R T, Koul A K, Zhao L and Beddoes J C 1995 Mater. Charact. 35 41

    Article  Google Scholar 

  3. May A, Belouchrani M A, Taharboucht S and Boudras A 2010 Proc. Eng. 2 1795

    Article  Google Scholar 

  4. Williams J C and Starke E A Jr 2003 Acta Mater. 51 5775

    Article  Google Scholar 

  5. May A, Belouchrani M A, Manaa A and Bouteghrine Y 2011 Proc. Eng. 10 798

    Article  Google Scholar 

  6. Moy C K S, Weiss M, Xia J, Sha G, Ringer S P and Ranzi G 2012 Mater. Sci. Eng. A 48 552

    Google Scholar 

  7. Bouzaiene H, Rezgui M A, Ayadi M and Zghal A 2012 Trans. Nonferr. Met. Soc. 22 1064

    Article  Google Scholar 

  8. Araújo D, Carpio F J, Méndez D, García A J, Villar M P, García R, Jiménez D and Rubio L 2003 Appl. Surf. Sci. 208 210

    Article  Google Scholar 

  9. Carpio F J, Araújo D, Pacheco F J, Méndez D, García A J, Villar M P, García R, Jiménez D and Rubio L 2003 Appl. Surf. Sci. 209 194

    Article  Google Scholar 

  10. Zhang L, Liu X S, Wang L S, Wu S H and Fang H Y 2012 Trans. Nonferr. Metal. Soc. 22 2777

    Article  Google Scholar 

  11. Kluger K 2015 Int. J. Fatigue 22 80

    Google Scholar 

  12. Kluger K and Łagoda T 2014 Int. J. Fatigue 66 229

    Article  Google Scholar 

  13. Taharboucht S, Aberkane A and May A 2016 Thesis p 62

  14. Mayer H, Papakyriacou M, Pippan R and Stanzl-Tschegg S 2001 Mater. Sci. Eng. A 48 314

    Google Scholar 

  15. Kofto D G 1990 Strength Mater. 22 283

    Article  Google Scholar 

  16. May A, Taleb L and Belouchrani M A 2013 Mater. Sci. Eng. A 123 571

    Google Scholar 

  17. Le V-D, Morel F, Bellett D, Saintier N and Osmond P 2016 Mater. Sci. Eng. A 426 649

    Google Scholar 

  18. Pineau A, Amine Benzerga A and Pardoen T 2016 Acta Mater. 107 508

    Article  Google Scholar 

  19. Celentano D J and Chaboche J-L 2007 Int. J. Plast. 23 1739

    Article  Google Scholar 

  20. Djebli A, Aid A, Bendouba M, Amrouche A, Benguediab M and Benseddiq N 2013 Int. J. Nonlin. Mech. 51 145

    Article  Google Scholar 

  21. Chaboche J L 1987 Nucl. Eng. Des. 19 105

    Google Scholar 

  22. Chaboche J L 1989 Int. J. Plast. 5 247

    Article  Google Scholar 

  23. Wang C, Wang X, Ding Z, Xu Y and Gao Z 2015 Int. J. Fatigue 11 78

    Google Scholar 

  24. Aid A, Amrouche A, Bouiadjra B B, Benguediab M and Mesmacque G 2011 Mater. Des. 32 183

    Article  Google Scholar 

  25. Nouailhas D, Chaboche J L, Savalle S and Cailletaud G 1985 Int. J. Plast. 1 317

    Article  Google Scholar 

  26. Walvekar A A, Leonard B D, Sadeghi F, Jalalahmadi B and Bolander N 2014 Tribol. Int. 79 183

    Article  Google Scholar 

  27. Thionnet A, Chambon L and Renard J 2002 Int. J. Fatigue 24 147

    Article  Google Scholar 

  28. Lukáš P, Jardin A, Leblond J-B, Berghezan D and Portigliatti M 2010 Proc. Eng. 2 1643

    Article  Google Scholar 

  29. Szusta J and Seweryn A 2011 Int. J. Fatigue 33 255

    Article  Google Scholar 

  30. Trebuňa P F, Sága M, Kopas P and Uhríčík M 2012 Proc. Eng. 48 599

    Article  Google Scholar 

  31. Lemaitre J 1985 Comput. Meth. Appl. Mech. Eng. 51 31

    Article  Google Scholar 

  32. Chak-yin T, Jianping F, Chi-pong T, Tai-chiu L, Luen-chow C and Bin R 2007 Acta Mech. Solida Sin. 20 57

    Article  Google Scholar 

  33. Kim D, Dargush G F and Basaran C 2013 Eng. Struct. 52 608

    Article  Google Scholar 

  34. Shen F, Hu W and Meng Q 2016 Int. J. Fatigue 90 125

    Article  Google Scholar 

  35. Kauppila P, Kouhia R, Ojanperä J, Saksala T and Sorjonen T 2016 Proc. Struct. Integrity 2 887

    Article  Google Scholar 

  36. Jiang M 1995 Eng. Fract. Mech. 52 971

    Article  Google Scholar 

  37. Crooks R, Wang Z, Levit V I and Shenoy R N 1998 Mater. Sci. Eng. A 257 145

    Article  Google Scholar 

  38. Al-Maharbi M, Karaman I, Beyerlein I J, Foley D, Hartwig K T, Kecskes L J and Mathaudhu S N 2011 Mater. Sci. Eng. A 528 7616

    Article  Google Scholar 

  39. Khan A S and Baig M 2011 Int. J. Plast. 27 522

    Article  Google Scholar 

  40. Li X, Al-Samman T and Gottstein G 2011 Mater. Des. 32 4385

    Article  Google Scholar 

  41. Cho J -H, Jae Kim W and Gil Lee C 2014 Mater. Sci. Eng. A 597 314

    Article  Google Scholar 

  42. Gilles G, Hammami W, Libertiaux V, Cazacu O, Yoon J H, Kuwabara T, Habraken A M and Duchêne L 2011 Int. J. Solids Struct. 48 1277

    Article  Google Scholar 

  43. Joo M S, Suh D W, Bae J H, Sanchez Mouriño N, Petrov R, Kestens L A I and Bhadeshia H K D H 2012 Mater. Sci. Eng. A 556 601

    Article  Google Scholar 

  44. Banumathy S, Mandal R K and Singh A K 2010 J. Alloys Compd. 26 500

    Google Scholar 

  45. Williams B W, Simha C H M, Abedrabbo N and Mayer R 2010 Int. J. Impact. Eng. 37 652

    Article  Google Scholar 

  46. Brünig M 1995 Fin. Elem. Anal. Des. 20 155

    Article  Google Scholar 

  47. Dillard T, Forest S and Lenny P 2006 Eur. J. Mech. A-Solid 25 526

    Article  Google Scholar 

  48. Khadyko M, Dumoulin S, Børvik T and Hopperstad O S 2015 Comput. Struct. 15 60

    Article  Google Scholar 

  49. Saï K, Taleb L and Cailletaud G 2012 Comput. Mater. Sci. 65 48

    Article  Google Scholar 

  50. Dong C, Yang X, Shi D and Yu H 2014 Mater. Des. 55 966

    Article  Google Scholar 

  51. Vanegas E, Mocellin K and Logé R 2011 Proc. Eng. 10 1208

    Article  Google Scholar 

  52. Garmestani H, Kalidindi S R, Williams L, Fountain C and Lee E W 2002 Int. J. Plast. 18 1373

    Article  Google Scholar 

  53. Wang Z-W, Yuan Y-B, Zheng R-X and Ameyama K 2014 Trans. Nonferr. Met. Soc. 24 2366

    Article  Google Scholar 

  54. Papasidero J, Doquet V and Lepeer S 2014 Mater. Sci. Eng. A 610 203

    Article  Google Scholar 

  55. Hajizadeh K, Tajally M, Emadoddin E and Borhani E 2014 J. Alloys Compd. 588 690

    Article  Google Scholar 

  56. Zong C, Zhu G-H and Mao W-M 2013 J. Iron. Steel Res. Int. 20 66

    Article  Google Scholar 

  57. Hales S J and Hafley R A 1998 Mater. Sci. Eng. A 257 153

    Article  Google Scholar 

  58. Mizera J, Driver J H, Jezierska E and Kurzydłowski K J 1996 Mater. Sci. Eng. A 94 21

    Google Scholar 

  59. Khan S, Kintzel O and Mosler J 2012 Int. J. Fatigue 37 112

    Article  Google Scholar 

  60. Henry D L 1955 Trans. Am. Soc. Mech. Eng. 77 913

    Google Scholar 

  61. Golos K and Ellyin F 1987 Theor. Appl. Fract. Mech. 7 169

    Article  Google Scholar 

  62. Bui-Quoc T 1982 Exp. Mech. 22 180

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges the French Team of Oxford Instrument for their grateful help in releasing the EBSD/EDS analyses using their best material resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A MAY.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MAY, A. On the origins of the anisotropic mechanical behaviour of extruded AA2017 aluminium alloy. Bull Mater Sci 40, 395–406 (2017). https://doi.org/10.1007/s12034-017-1383-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1383-3

Keywords

Navigation