Skip to main content
Log in

Synthesis, structure and spectroscopic characteristics of Ti(O,C)2/carbon nanostructured globules with visible light photocatalytic activity

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A morphology-controlled facile synthesis of titanium-glycolate precursors with subsequent annealing in He and air atmospheres has been exploited for the production of nanostructured composite globules, whiskers and plates of C-modified titanium dioxide. Characterisation tests proved the as-obtained globule composites to exclusively exhibit high-specific surface area (up to 150–170 m2 g−1), thus being useful for photocatalytic applications in the visible-light region. The combination of the electron paramagnetic resonance, X-ray photoelectron spectroscopy, absorption spectroscopy and transmission electron microscopy revealed the presence of three kinds of carbon in the globules: a small bandgap (with measured width of 0.8 eV) amorphous carbon surrounding the anatase nanocrystallites, C-containing radicals including carbonates on the surface of TiO2 and interstitial carbon in the oxygen position of the TiO2 lattice. It was found that the maximum visible-light photocatalytic activity of the globules is determined by the optimal surface concentration of amorphous carbon of about 0.002 wt.% m−2. Under these conditions, the highest synergic photosensitising effect on TiO2 nanocrystallites of all three kinds of carbon is expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Hashimoto K, Irie H and Fugishima A 2005 Japn. J. Appl. Phys. 44 8269

    Article  Google Scholar 

  2. Zaleska 2008, Recent Patents on Engineering 2 157

    Article  Google Scholar 

  3. Yu H, Irie H and Hashimoto K 2010 J. Am. Chem. Soc. 132 6898

    Article  Google Scholar 

  4. Hsiao Y C, Wu T F, Wang Y C, Hu C C and Huang C 2014 Appl. Catal. B: Environ. 148–149 250

    Article  Google Scholar 

  5. Lazar M A, Varghese S and Nair S S 2012 Catalysis 2 572

    Google Scholar 

  6. Leary R and Westwood A 2011 Carbon 49 741

    Article  Google Scholar 

  7. Pelaez M, Nolan N T, Pillai S C, Seery M K, Falaras P, Kontos A G et al 2012, Appl. Catal. B: Environ. 125 331

    Article  Google Scholar 

  8. Reddy K M, Baruwati B, Jayalakshmi M, Rao M M and Manorama S V 2005 J. Solid State Chem. 178 3352

    Article  Google Scholar 

  9. Wang Y, Huang Y, Ho W, Zhang L, Zou Z and Lee S 2009 , J. Hazard. Mater. 169 77

    Article  Google Scholar 

  10. Zhong J, Chen F and Zhang J L 2010 J. Phys. Chem. C 114 933

    Article  Google Scholar 

  11. Liu Y, Liu X, Lu D, Fang P, Xiong R, Wie J and Pan C 2014 J. Mol. Catal. A: Chem. 392 208

    Article  Google Scholar 

  12. Wu Z B, Dong F, Zhao W R, Wang H Q, Liu Y and Guan B H 2009 Nanotechnology 20 235701

    Article  Google Scholar 

  13. Ren W J, Ai Z H, Jia F L, Zhang L Z, Fan X X and Zou Z G 2007 Appl. Catal. B: Environ. 69 138

    Article  Google Scholar 

  14. Wu X, Yin S, Dong Q and Sato T 2014 Appl. Catal. B: Environ. 156–157 257

    Article  Google Scholar 

  15. Wang X, Hu Z, Chen Y, Zhao G, Liu Y and Wen Z 2009 Appl. Surf. Sci. 255 3953

    Article  Google Scholar 

  16. Asilturk M and Sener S 2012 Chem. Eng. J. 180 354

    Article  Google Scholar 

  17. Tryba B, Morawski A W and Inagaki M 2003 Appl. Catal. B: Environ. 41 427

    Article  Google Scholar 

  18. Gianluca L P, Bono A, Krishnaiah D and Collin J G 2008 , J. Hazard. Mater. 157 209

    Article  Google Scholar 

  19. Stefik M, Lee J and Wiesner U 2009 Chem. Commun. 18 2532

    Article  Google Scholar 

  20. Lee Y F, Chang K H, Hu C C and Lin K M 2010 J. Mater. Chem. 20 5682

    Article  Google Scholar 

  21. Tang G, Liu S, Tang H, Zhang D, Li C and Yang X 2013 Ceram. Intern. 39 4969

    Article  Google Scholar 

  22. Du J, Chen W, Zhang C, Liu Y, Zhao C and Dai Y 2011 Chem. Eng. J. 170 53

    Article  Google Scholar 

  23. Ma Y, Ji G, Ding B and Lee J Y 2012 J. Mater. Chem. 22 24380

    Article  Google Scholar 

  24. Zhang B, Chen B, Shi K, He S, Liu X, Du Z et al 2003, Appl. Catal. B: Environ. 40 253

    Article  Google Scholar 

  25. Chen D, Jiang Z, Geng J, Wang Q and Yang D 2007 Ind. Eng. Chem. Res. 46 2741

    Article  Google Scholar 

  26. Park Y, Kim W, Park H, Tachikawa T, Majima T and Choi W 2009 Appl. Catal. B: Environ. 91 355

    Article  Google Scholar 

  27. Wang D, Yu R, Chen Y, Kumada N, Kinomura N and Takano M 2004 Solid State Ionics 172 101

    Article  Google Scholar 

  28. Zhong L S, Hu J S, Wan L J and Song W G 2008 Chem. Commun. 10 1184

    Article  Google Scholar 

  29. Krasil’nikov V N, Shtin A P, Gyrdasova O I, Polyakov E V and Shveikin G P 2008 Russ. J. Inorg. Chem. 53 1065

    Article  Google Scholar 

  30. Dong S, Chen X, Gu L, Zhou X, Xu H, Wang H et al 2011, Appl. Mater. Interfaces 3 93

    Article  Google Scholar 

  31. Krasil’nikov V N, Zhukov V P, Baklanova I V, Gyrdasova O I and Buldakova L Y. 2015, Catal. Lett. 145 1290

    Article  Google Scholar 

  32. Barklie R C 2010 Diam. Relat. Mater. 10 174

    Article  Google Scholar 

  33. Ristein J, Schafer J and Ley L 1995 Diam. Relat. Mater. 4 508

    Article  Google Scholar 

  34. Tamor M A, Haire J A, Wu C H and Hass K C 1989 Appl. Phys. Lett. 54 123

    Article  Google Scholar 

  35. Krasil’nikov V N, Shtin A P, Gyrdasova O I, Polyakov E V, Buldakova L Yu, Yanchenko M Yu et al 2010, Russ. J. Inorg. Chem. 55 1184

    Article  Google Scholar 

  36. Shubnikov A V and Sheftal N N 1966 Growth of crystals (New York: Consultants Bureau)

    Google Scholar 

  37. Ferrari A C and Robertson J 2001 Phys. Rev. B 64 075414

    Article  Google Scholar 

  38. Kausteklis J, Cevc P, Arcon D, Nasi L, Pontiroli D, Mazzani M and Ricco M 2011 Phys. Rev. B 84 125406

    Article  Google Scholar 

  39. Bardeleben H J, Cantin J L, Zellama K and Zeinert A 2003 Diam. Relat. Mater. 12 124

    Article  Google Scholar 

  40. Konstantinova E A, Kokorin A I, Sakthivel S, Kisch H and Lips K 2007 Chimia 61 810

    Article  Google Scholar 

  41. Liu G, Han C, Pelaez M, Zhu D, Liao S, Likodimos V et al 2012, Nanotechnology 23 294003

    Article  Google Scholar 

  42. Yang K, Dai Y, Huang B and Whangbo M H 2009 J. Phys. Chem. C 113 2624

    Article  Google Scholar 

  43. Zaynullina V, Zhukov V, Krasil’nikov V, Yanchenko M, Buldakova L and Polyakov E 2010 Phys. Solid State 52 271

    Article  Google Scholar 

  44. Green J, Carter E and Murphy D M 2009 Chem. Phys. Lett. 477 340

    Article  Google Scholar 

  45. Haerle R, Riedo E, Pasquarello A and Baldereschi A 2001 Phys. Rev. B 65 045101

    Article  Google Scholar 

  46. Sakthivel S and Kisch H 2003 Angew. Chem. Int. Ed. 42 4908

    Article  Google Scholar 

  47. Gu D, Lu Y, Yang B C and Hu Y D 2008 Chem. Commun. 21 2453

    Article  Google Scholar 

  48. Tauc J, Grigorovici R and Vancu A 1966 Phys. Stat. Sol.(b) 15 627

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to N G Popova, the Foreign Languages Department of the Institute of Law and Philosophy, the Ural Branch of RAS, for the help in preparing the English version of the manuscript. This work was supported by the Russian Foundation for Basic Research (grant no. 13-03-00265-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E V SHALAEVA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KRASIL’NIKOV, V.N., SHALAEVA, E.V., BAKLANOVA, I.V. et al. Synthesis, structure and spectroscopic characteristics of Ti(O,C)2/carbon nanostructured globules with visible light photocatalytic activity. Bull Mater Sci 39, 1569–1579 (2016). https://doi.org/10.1007/s12034-016-1291-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1291-y

Keywords

Navigation