Skip to main content
Log in

Synthesis and characterization of castor oil-based polyurethane for potential application as host in polymer electrolytes

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Polyurethane (PU) based on polyol, derived from castor oil has been synthesized and characterized for potential use as a base material for electrolytes. Transesterification process of castor oil formed a polyol with hydroxyl value of 190 mg KOH g−1 and molecular weight of 2786 g mol−1. The polyols together with 4,4′-diphenylmethane diisocyanate were used to synthesize the desired bio-based PU. The molecular structure of PU was investigated by Fourier transform infrared (FTIR) spectroscopy. The disappearance of NCO peak in the FTIR spectrum at 2270–2250 cm−1 showed that diisocyanate has completely reacted to form PU. Morphological characteristic of the PU film was analysed using scanning electron microscopy, whereas thermal characteristics of the materials were characterized using dynamic mechanical analysis and thermal gravimetric analysis. The cross-sectional micrograph showed that the prepared film was highly amorphous and homogeneous. Thermal studies revealed that the film had low glass transition temperature, −15.8°C, and was thermally stable up to 259°C. These observations indicated the synthesized PU possessed favourable properties to act as a base material in polymer electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chattopadhyay D K and Webster D C 2009, Prog. Polym. Sci. 34 1068

    Article  Google Scholar 

  2. Szycher M 2013 Szycher’s handbook of polyurethanes (ed.) M Szycher (Boca Raton: CRC Press, Taylor & Francis) 2nd ed, p 2

  3. Firdaus M and Meier M A R 2013, Green Chem. 15 370

    Article  Google Scholar 

  4. Hepburn C 1992, Iran J. Polym. Sci. Technol. 1 84

    Google Scholar 

  5. Khemani K C 1997 Polymeric foams science and technology (ed.) K C Khemani (Washington DC: ACS Symposium Series) p 1

  6. Pfister D P, Xia Y and Larock R C 2011, ChemSusChem. 4 703

    Article  Google Scholar 

  7. Louwrier A 1998, Biotechnol. Appl. Biochem. 27 1

    Article  Google Scholar 

  8. Dutta N, Karak N and Dolui S K 2004, Prog. Org. Coat. 49 146

    Article  Google Scholar 

  9. Badri K H, Othman Z and Ahmad S H 2004, J. Mater. Sci. 39 5541

    Article  Google Scholar 

  10. Alfani R, Iannace S and Nicolais L 1998, J. Appl. Polym. Sci. 68 739

    Article  Google Scholar 

  11. Petrovic Z S, Zhang W and Javni I 2005, Biomacromolecules 67 13

    Google Scholar 

  12. Uyama H, Kuwabara M, Tsujimoto T, Nakano M, Usuki A and Kobayashi S 2003, Chem. Mater. 15 2492

    Article  Google Scholar 

  13. Mutlu H and Meier M A R 2010, Eur. J. Lip. Sci. Technol. 112 10

    Article  Google Scholar 

  14. Somani K P, Kansara S S, Patel N K and Rakshit A K 2003, Int. J. Adhes. Adhes. 23 269

    Article  Google Scholar 

  15. Vu C 1989 US Patent 4859735A

  16. Cardoso G T, Neto S C and Vecchia F 2012, Front. Architectural Res. 1 348

    Article  Google Scholar 

  17. Wang S and Min K 2010, Polymer 51 2621

    Article  Google Scholar 

  18. Patton T C 1962 Alkyd resin technology (New York: Interscience) p 1

  19. Petrovic Z S 2008, Polym. Rev. 48 109

    Article  Google Scholar 

  20. Smith B C 1998 Infrared spectral interpretation: a systematic approach (ed.) B C Smith (New York: CRC Press) p 91

  21. Narine S S, Kong X, Bouzidi L and Sporns P 2007, J. Am. Oil Chem. Soc. 84 65

    Article  Google Scholar 

  22. Mortley A, Bonin H W and Bui V T 2007, Nucl. Instrum. Methods: Phys. Res. 265 98

    Article  Google Scholar 

  23. Xu Y, Petrovic Z S, Das S and Wilkes G L 2008, Polymer 49 4248

    Article  Google Scholar 

  24. Rashmi B J, Rusu D, Prashantha K, Lacrampe M -F and Krawczak P 2013, eXPRESS Polym. Lett. 7 852

    Article  Google Scholar 

  25. Badri K H 2012 Biobased polyurethane from palm kernel oil-based polyol (New York: InTech Publication) p 447 (Chapter 20)

  26. Júnior J H S A, Bertuol D A, Meneguzzi A, Ferreira C A and Amado F D R 2013, Mater. Res. 16 860

    Article  Google Scholar 

  27. Liu D, Tian H, Zhang L and Chang P R 2008, Ind. Eng. Chem. Res. 47 9330

    Article  Google Scholar 

  28. Yeganeh H and Shamekhi M A 2006, J. Appl. Polym. Sci. 99 1222

    Article  Google Scholar 

  29. Corcuera M A, Rueda L, Saralegui A, Martín M D, Fernández-d’Arlas B, Mondragon I and Eceiza A 2011, J. Appl. Polym. Sci. 122 3677

    Article  Google Scholar 

  30. Su’ait M S, Ahmad A, Badri K H, Mohamed N S, Rahman M Y A, Ricardo C L A and Scardi P 2014, Int. J. Hydroenergy 39 3005

    Article  Google Scholar 

  31. Ramesh S and Ang G P 2010, Ionics 16 465

    Article  Google Scholar 

  32. Ahmad A, Rahman M Y A, Low S P and Hamzah H 2011 ISRN Mater. Sci. Article ID 401280

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S IBRAHIM.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

IBRAHIM, S., AHMAD, A. & MOHAMED, N.S. Synthesis and characterization of castor oil-based polyurethane for potential application as host in polymer electrolytes. Bull Mater Sci 38, 1155–1161 (2015). https://doi.org/10.1007/s12034-015-0995-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-0995-8

Keywords

Navigation