Skip to main content
Log in

Fabrication of worm-like Ag2S nanocrystals under mediation of protein

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A simple protein-assisted method was reported to synthesize pepsin-conjugated Ag2S nanocrystals in aqueous solution. The morphology, composition and structure of the products were characterized by transmission electron microscopy, high-resolution transmission electron microscopy, energy-dispersive spectroscopy, selected area electron diffraction and X-ray diffraction measurements. The results showed that as-prepared monoclinic Ag2S nanocrystals are worm-like nanochains in shape with sizes about 25 nm in diameter and up to hundreds of nanometres in length. The multiple coordinate bonds of pepsin molecules to the surface of Ag2S nanocrystals make as-prepared samples have good colloidal stability and biocompatibility as elucidated by Fourier transform infrared examination. Thermogravimetry–differential scanning calorimetry analysis indicated that the obtained products are inorganic–organic nanocomposites and there is strong interaction between Ag2S and pepsin. This interaction could result in the change of hydrophilic environment of pepsin and consequently intrinsic fluorescence of protein was quenched by Ag2S nanocrystals. Furthermore, the nanochains assembly of particle–particle and rod–rod oriented attachment was discussed to investigate the growth mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Sapra S, Mayilo S, Klar T A, Rogach A L and Feldmann J 2007 Adv. Mater. 19 569

    Article  Google Scholar 

  2. Pan D C, Wang X L, Zhou Z H, Chen W, Xu C L and Lu Y F 2009 Chem. Mater. 21 2489

    Article  Google Scholar 

  3. Rai S and Bokatial L 2011 Bull. Mater. Sci. 34 227

    Article  Google Scholar 

  4. Ghosh D, Mondal S, Ghosh S and Saha A 2012 J. Mater. Chem. 22 699

    Article  Google Scholar 

  5. Priya R and Kanmani S 2010 Bull. Mater. Sci. 33 85

    Article  Google Scholar 

  6. Wang H J, Yu X H, Cao Y, Zhou B and Wang C F 2012 J. Inorg. Biochem. 113 40

    Article  Google Scholar 

  7. Wang Y, Tang Z, Tan S and Kotov N A 2005 Nano Lett. 5 243

    Article  Google Scholar 

  8. Yang L, Yang H, Yang Z, Cao Y, Ma X, Lu Z and Zheng Z 2008 J. Phys. Chem. B 112 9795

    Article  Google Scholar 

  9. Zhang X, Yang L, Jiang Y, Yu B B, Zou Y G, Fang Y, Hu J S and Wan L J 2013 Chem. Asian J. 8 2483

    Article  Google Scholar 

  10. Qin D, Zhang L, He G and Liu Q 2011 Mater. Lett. 66 7

    Article  Google Scholar 

  11. Mahdi M A, Hassan J J, Kasim S J, Ng S S and Hassan Z 2014 Bull. Mater. Sci. 37 337

    Article  Google Scholar 

  12. Mann S 1993 Nature 365 499

    Article  Google Scholar 

  13. Boskey L 1998 J. Cell. Biochem. 72 83

    Article  Google Scholar 

  14. Aizenberg J 2004 Adv. Mater. 16 1295

    Article  Google Scholar 

  15. Dickerson M B, Sandhage K H and Naik R R 2008 Chem. Rev. 108 4935

    Article  Google Scholar 

  16. Briggs B D and Knecht M R 2012 Phys. Chem. Lett. 3 405

    Article  Google Scholar 

  17. Jiang J, Yu R, Zhu J, Yi R, Qiu G, He Y and Liu X 2009 Mater. Chem. Phys. 115 502

    Article  Google Scholar 

  18. Liu X L, Zhu Y J, Zhang Q, Li Z F and Yang B 2012 Mater. Res. Bull. 47 4263

    Article  Google Scholar 

  19. Huang P, Bao L, Yang D, Gao G, Lin J, Li Z, Zhang C and Cui D 2012 Chem. Asian J. 6 1156

    Article  Google Scholar 

  20. Lu Q, Gao F and Komarneni S 2006 Nanotechnol. 17 2574

  21. Yang H Y, Zhao Y W, Zhang Z Y, Xiong H M and Yu S N 2013 Nanotechnol. 24 055706

    Article  Google Scholar 

  22. Kong Y, Chen J, Gao F, Li W, Xu X, Pandoli O, Yang H, Ji J and Cui D 2010 Small 6 2367

    Article  Google Scholar 

  23. Guo Y, Zhang J, Yang L, Wang H, Wang F and Zheng Z 2010 Chem. Commun. 46 3493

    Article  Google Scholar 

  24. Cao Y, Wang H J, Gao C, Sun Y Y, Yang L, Wang B Q and Zhou J G 2011 J. Nanopart. Res. 13 2759

    Article  Google Scholar 

  25. Liu X, Liu R, Tang Y, Zhang L, Hou X and Lv Y 2012 Analyst 137 1473

    Article  Google Scholar 

  26. Gray J J 2004 Curr. Opin. Struct. Biol. 14 110

    Article  Google Scholar 

  27. Treuel L, Eslahian K A, Docter D, Lang T, Zellner R, Nienhaus K, Nienhaus G U, Stauber R H and Maskos M 2014 Phys. Chem. Chem. Phys. 16 15053

    Article  Google Scholar 

  28. Ghosh D, Mondal S, Roy C N and Saha A 2013 Phys. Chem. Chem. Phys. 15 20354

    Article  Google Scholar 

  29. Pathan H M, Salunkhe P V, Sankapal B R and Lokhande C D 2011 Mater. Chem. Phys. 72 105

    Article  Google Scholar 

  30. Xu Z, Bando Y, Wang W, Bai X and Golberg D 2010 ACS Nano 4 2515

    Article  Google Scholar 

  31. Misra S K, Dybowska A, Berhanu D, Luoma S N and Valsami-Jones E 2012 Sci. Total Environ. 438 225

    Article  Google Scholar 

  32. Wataha J C, Hanks C T and Craig R G 1993 J. Biomed. Mater. Res. 27 227

    Article  Google Scholar 

  33. Xu C, Yuan Z, Kohler N, Kim J, Chung M A and Sun S 2009 J. Am. Chem. Soc. 131 15346

    Article  Google Scholar 

  34. Chen J, Zhang T, Feng L, Zhang M, Zhang X, Su H and Cui D 2013 Mater. Lett. 96 224

    Article  Google Scholar 

  35. Chen J, Kong Y, Ji J, Ruan J, Wang K, Gao F and Cui D 2012 Nanoscale 4 4455

    Article  Google Scholar 

  36. Kato K, Kawachi Y and Nakamura H 2014 J. Asian Ceram. Soc. 2 33

    Article  Google Scholar 

  37. Xue Z, Hu B, Dai S and Du Z 2012 Mater. Chem. Phys. 136 771

    Article  Google Scholar 

  38. Kuang D, Xu A, Fang Y, Liu H, Frommen C and Fenske D 2003 Adv. Mater. 15 1747

    Article  Google Scholar 

  39. Kamatari Y O, Dobson C M and Konno T 2003 Prot. Sci. 12 717

    Article  Google Scholar 

  40. Liu B and Zeng H C 2005 Small 1 566

    Article  Google Scholar 

  41. Priyam A, Chatterjee A, Das S K and Saha A 2005 Res. Chem. Intermed. 31 691

    Article  Google Scholar 

  42. Chatterjee A, Priyam A, Ghosh D, Mondal S, Bhattacharya S C and Saha A 2012 J. Lumin. 132 545

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Project of Henan Province Higher Educational Science and Technology Program (15A150070) and the Key Nature Science Foundation of Pingdingshan University (PDSU-QNJJ-2013003). We also thank the referees for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LI ZHANG.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

QIN, D., ZHANG, L., DU, X. et al. Fabrication of worm-like Ag2S nanocrystals under mediation of protein. Bull Mater Sci 38, 1665–1671 (2015). https://doi.org/10.1007/s12034-015-0973-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-0973-1

Keywords

Navigation