Skip to main content
Log in

The effects of growth time on the quality of graphene synthesized by LPCVD

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The graphene has several unique characteristics and many applications in all fields. Some of these characteristics are the quantum Hall effect at room temperature, the ambipolar field effect, the optical properties, the high electron mobility and the best electronic properties. The ability of fabricating large-area monolayer graphene is hindering its application. In this paper the effects of growth time on the quality of graphene synthesized by low-pressure chemical vapour deposition (LPCVD) has been investigated. Large-area monolayer graphene is synthesized on polycrystalline Cu foil (~1 cm2) by controlled experiment LPCVD at different growth times (30, 60, 120 and 150 s). The synthesized graphene was characterized using Raman spectroscopy and scanning electron microscopy (SEM). The Raman spectrum showed a I G /I 2D ~0.2 ratio which indicates that all samples are single-layer graphene and the SEM images demonstrate that the domain size increases when the growth time increases. The growth mechanism of LPCVD of graphene on Cu and the mechanisms governing the Raman scattering process in the films are also discussed. The control over the grain size of synthesized graphene by adjusting the growth time (achieved in this work), provides useful insights for understanding the growth mechanism of LPCVD of graphene and for optimization of the growth process to further improve the quality of graphene. Finally, with analyses of all investigations we found that the quality and the large-area of monolayer graphene improved by increasing the growth time and it is very important consequence for all those who do research on graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Novoselov K S, Geim A K, Morozov S V, Jiang D, Dubobos S V, Grigorieva I V and Firsov A A 2004, Science 306 666

    Article  Google Scholar 

  2. Schwierz F 2010 Nat. Nanotechnol. 5 487

  3. Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010, Nat. Photon. 4 611

    Article  Google Scholar 

  4. Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim Kw S, Ahn J H, Kim P, Choi J Y and Hong B H 2009, Nature 457 706

    Article  Google Scholar 

  5. Nagashio K, Nishimura T, Kita K and Toriumi A 2009, Appl. Phys. Exp. 2 025003

    Article  Google Scholar 

  6. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkoy A N, Conrad E H, First P N and de Heer W A 2006, Science 312 1191

    Article  Google Scholar 

  7. Li X, Li X., Magnuson C W, Venugopal A, An J, Suk J W, Han B, Borysiak M, Cai W, Velamakanni A, Zhu Y, Fu L, Vogel E M, Voelkl E, Colombo L and Ruoff R S 2010, Nano Lett. 10 4328

    Article  Google Scholar 

  8. Usachov D, Dobrotvorskii A M, Varykhalov A, Rader O, Gudat W, Shikin A M and Adamchuk V K 2008, Phys. Rev. B 78 85403–1-8

    Article  Google Scholar 

  9. Loginova E, Bartelt N C, Feibelman P J and MacCarty K F 2008, N J. Phys. 10 093026

    Article  Google Scholar 

  10. N’Diaye A, Bleikamp S, Feibelman P J and Michely T 2006, Phys. Rev. Lett. 97

  11. Li X, Cai W, An J, Kim S, Nah J, Yahng D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009, Science 324 1312

    Article  Google Scholar 

  12. Ong T P, Xiong F, Chang R P H and White C W 1992 J. Mater. Res. 7 24

  13. Constant L, Speisser C and Normand F L 1997, Surf. Sci. 387 28

    Article  Google Scholar 

  14. Zhou W, Han Z, Wang J, Yan Z., Jin Z, Sun X, Yawen Z., Yan C and Li Y 2006, Nano Lett. 6 2987

    Article  Google Scholar 

  15. Zhang W, Wu P, Li Z and Yang J 2011, J. Phys. Chem. C 115 17782

    Article  Google Scholar 

  16. Gelb A and Cardillo M 1996, Surf. Sci. 59 140

    Google Scholar 

  17. Gelb A and Cardillo M 1977, Surf. Sci. 64 208

    Article  Google Scholar 

  18. Fan L, Zou J, Li Z, Li X, Wang K, Wei J, Zhong M, Wu D, Xu Z and Zhu H 2012, Nanotechnology 23 115605

    Article  Google Scholar 

  19. Bhaviripudi S, Jia X, Dresselhaus M S and Kong J 2010, J. Nano Lett. 10 4128

    Article  Google Scholar 

  20. Li X S, Cai W, Colombo L and Ruoff R S 2009, Nano Lett. 9 4268

    Article  Google Scholar 

  21. Dresselhaus M S, Jorio A, Hofmann M, Dresselhaus G and Saito R 2010, Nano Lett. 10 751

    Article  Google Scholar 

  22. Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006, Phys. Rev. Lett. 97 187401

    Article  Google Scholar 

  23. Ni Z H, Chen W, Fan X F, Kuo J L, Yu T, Wee A T S and Shen Z X 2008, Phys. Rev. B 77 115416

    Article  Google Scholar 

  24. Malard L M, Pimenta M A, Dresselhaus G and Dresselhaus M S 2009, Phys. Rep. 473 51

    Article  Google Scholar 

  25. Oliveira M H J., Schumann T, Gargallo-Caballero R, Seyller T, Ramsteiner M, Trampert A, Geelhaar L, Lopes J M J and Riechert 2013, Carbon 56 339

    Article  Google Scholar 

  26. Wang G, Zhang M, Zhu Y, Ding G, Jiang D, Guo Q, Liu S, Xie X, Chu P K, Di Z and Wang X 2013, Sci. Rep. 3 2465

    Google Scholar 

  27. Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C and Lau C N 2009, Nat. Nanotechnol. 4 562

    Article  Google Scholar 

  28. Wu Y, Robertson A W, Schaffel F, Speller S C and Warner J H 2011, Chem. Mater. 23 4543

    Article  Google Scholar 

  29. Chen S, Cai W, Piner R D, Suk J W, Wu Y, Ren Y, Kang Y and Ruoff R S 2011, Nano Lett. 11 3519

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R ALIPOUR.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

JAFARI, A., ALIPOUR, R. & GHORANNEVISS, M. The effects of growth time on the quality of graphene synthesized by LPCVD. Bull Mater Sci 38, 707–710 (2015). https://doi.org/10.1007/s12034-015-0918-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-0918-8

Keywords

Navigation