Skip to main content

Advertisement

Log in

Room temperature synthesis of crystalline Sb2S3 for SnO2 photoanode-based solar cell application

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The preparation of crystalline antimony sulphide (Sb2S3) by chemical route at room temperature was reported in this paper. The structural, morphological and optical properties of as-synthesized sample were systematically investigated. X-ray diffraction (XRD) analysis confirms the orthorhombic crystal phase for prepared Sb2S3. Scanning electron microscope (SEM) images show uniform, dense spherical morphology having diameter around 200–220 nm. Energy band gap calculated from optical absorption spectra was observed around 2.17 eV. Contact angle measurement confirms the hydrophilic nature of the deposited film. The photoluminescence analysis shows low green luminescence as well as Stoke’s shift for as-prepared Sb2S3. The nanostructured solar cell is fabricated for energy harvesting purpose with Sb2S3-sensitized SnO2 photoanode and polysulphide electrolyte. The solar cell with FTO/SnO2/Sb2S3 photoanode shows V OC ∼ 240 mV, J sc ∼ 0.640 mA cm−2 and FF ∼ 35%. The working mechanism and energy level diagram of Sb2S3/SnO2 system have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Rokesh K, Pandikumar A and Jothi Venkatachalam K 2013 Mater. Sci. Forum 771 1

  2. Jinchu I, Sreekala C and Sreelatha K 2013 Mater. Sci. Forum 771 39

  3. Nozik A 2008 J. Chem. Phys. Lett. 457 3

  4. Sun W, Yu Y, Pan H, Gao X F, Chen Q and Peng L M 2008 J. Am. Chem. Soc. 130 1124

  5. Zhu G, Su F F, Lv T, Pan L K and Sun Z 2010 Nanoscale Res. Lett. 5 1749

  6. Wang C B, Jiang Z F, Wei L, Chen Y X, Jiao J, Eastman M and Liu H 2012 Nano Energy 1 440

  7. Zhang Q X, Guo X Z, Huang X M, Huang S Q, Li D M, Luo Y H, Shen Q, Toyoda T and Meng Q B 2011 Phys. Chem. Chem. Phys. 13 4659

  8. Luan C Y, Aleksandar V, Andrei S S, Xu X Q, Wang H E, Chen X, Xu J, Zhang W J, Lee C S, Andrey L R and Juan A Z 2011 Nanoscale Res. Lett. 6 340

  9. Chen Y X, Wei L, Zhang G H and Jiao J 2012 Nanoscale Res. Lett. 7 516

  10. Chen J, Lei W and Deng W Q 2011 Nanoscale 3 674

  11. Chen C, Xie Y, Ali G, Yoo S H and Cho S O 2011 Nanoscale Res. Lett. 6 462

  12. Kieven D, Dittrich T, Belaidi A, Tornow J, Schwarzburg K, Allsop N and Lux-Steiner M 2008 Appl. Phys. Lett. 92 153107

  13. Wang L D, Zhao D X, Su Z S and Shen D Z 2012 Nanoscale Res. Lett. 7 106

  14. Maiti N, Im S H, Lim C S and Seok S I 2012 Dalton Trans. 41 11569

  15. Li Y, Wei L, Zhang R, Chen Y, Mei L and Jiao J 2013 Nanoscale Res. Lett. 8 89

  16. Rajpure K Y and Bhosale C H 2000 J. Phys. Chem. Solids 61 561

  17. Desai J D and Lokhande C D 1994 Thin Solid Films 237 29

  18. Pawar S H, Tamhankar S P, Bhosale P N and Upllane M D 1983 Ind. J. Pure Appl. Phys. 21 665

  19. Lokhande C D, Sankpal B R, Mane R S, Pathan H M, Muller M, Giersig M and Ganesan V 2002 Appl. Surf. Sci. 193 1

  20. Yafit I, Olivia N, Miles P and Gary H 2009 J. Phys. Chem. C 113 4254

  21. Moon S J, Itzhaik Y, Yum J H, Zakeeruddin S M, Hodes G and Gratzel M 2010 J. Phys. Chem. Lett. 1 1524

  22. Im S H, Kim H J, Rhee J H, Lim C S and Seok S I 2011 Energy Environ. Sci. 4 2799

  23. Arote S A, Ingale R V, Tabhane V and Pathan H M 2014 J. Renew. Sustain. Energy 6 013132

  24. Meherzi H M, Nasr T B, Kamoun N and Dachraoui M 2010 Physica B 405 3101

  25. Azaroff L V 1968 Elements of X-ray crystallography (New York: McGraw-Hill) p. 552

  26. Han Q, Lu J, Yang X, Lu L and Wang X 2008 Cryt. Growth Des. 8 395

  27. Messina S, Nair M T S and Nair P K 2008 J. Phys. D: Appl. Phys. 41 095112

  28. Nasr C, Kamat P and Hotchandani S 1996 J. Electroanal. Chem. 420 201

  29. Alemi A, Hanifehpour Y and Joo S W 2011 J. Nanomater. 2011 414798

  30. Kulyk B, Kapustianyk V, Krupka O and Sahraoui B 2011 J. Phys.: Conf. Ser. 289 012003

  31. Xu Y, Ren Z, Cao G, Ren W, Deng K and Zhong Y 2009 Cryst. Res. Technol. 44 851

  32. Fujita T, Kurita K, Takiyama K and Oda T 1988 J. Lumin. 39 175

  33. Rhee J H, Chung C and Diau E W-G 2013 NPG Asia Mater. 5 e68

  34. Patrick C E and Giustino F 2011 Adv. Funct. Mater. 21 4663

Download references

Acknowledgements

HMP is thankful to Science and Engineering Research Board, Department of Science and Technology, New Delhi (Fast track Scheme for Young Scientists) and Departmental Research Development Program, Savitribai Phule Pune University, for financial support. SAA is also thankful to University Grant Commission, New Delhi for Faculty Improvement Program fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ANIL N KULKARNI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KULKARNI, A.N., AROTE, S.A., PATHAN, H.M. et al. Room temperature synthesis of crystalline Sb2S3 for SnO2 photoanode-based solar cell application. Bull Mater Sci 38, 493–498 (2015). https://doi.org/10.1007/s12034-014-0836-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-014-0836-1

Keywords

Navigation