Skip to main content

Advertisement

Log in

Structure-Based Virtual Screening and Discovery of New Bi-functional DAPK1 Inhibitors

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Recently, a new signaling complex Death-Associated Protein Kinase 1 (DAPK1)—N-methyl D-aspartate receptor subtype 2B (NR2B) engaged in the neuronal death cascade was identified where it was found that after stroke injury, N-methyl-D-aspartate glutamate (NMDA) receptors interact with DAPK1 through NR2B subunit and lead to excitotoxicity via overactivation of NMDA receptors. In this study, we used ZINC-12 database to find out potential inhibitor of DAPK1 and found some natural compounds showing good binding affinity towards DAPK1. These natural compounds showed interactions with ATP-binding site residues as well as substrate-recognition motifs. Thus, it has been concluded that the ligands those are showing interactions with both the sites could be considered as potential inhibitors for DAPK1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

DAPK1:

Death-associated protein kinase 1

Ser/Thr:

Serine/Threonine

Ca2+/CaM:

Ca2+/calmodulin

NMDARs:

N-Methyl-D-aspartate receptors

AD:

Alzheimer’s disease

NR2B-CT:

N-Methyl D-aspartate receptor subtype 2B (NR2B) carboxyl terminus

GEL:

Gly-Glu-Leu

PEN:

Pro-Glu-Asn

PEF/Y:

Pro-Glu-Phe/Tyr

VS:

Virtual screening

MD:

Molecular dynamics

SPC:

Simple point charge

RMSD:

Root-mean-square deviation

RMSF:

Root-mean-square fluctuation

SASA:

Solvent accessible surface area

Rg:

Radius of gyration

MMGBSA:

Molecular mechanics-generalized born surface area

References

  1. Singh, P., Ravanan, P., & Talwar, P. (2016). Death associated protein kinase 1 (DAPK1): A regulator of apoptosis and autophagy. Frontiers in Molecular Neuroscience, 9, 46.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hainsworth, A. H., Allsopp, R. C., Jim, A., Potter, J. F., Lowe, J., Talbot, C. J., & Prettyman, R. J. (2010). Death-associated protein kinase (DAPK1) in cerebral cortex of late-onset Alzheimer’s disease patients and aged controls. Neuropathology and Applied Neurobiology, 36, 17–24.

    Article  CAS  PubMed  Google Scholar 

  3. Gade, P., Manjegowda, S. B., Nallar, S. C., Maachani, U. B., Cross, A. S., & Kalvakolanu, D. V. (2014). Regulation of the death-associated protein kinase 1 expression and autophagy via ATF6 requires apoptosis signal-regulating kinase 1. Molecular and Cellular Biology, 34, 4033–4048.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gozuacik, D., Bialik, S., Raveh, T., Mitou, G., Shohat, G., Sabanay, H., Mizushima, N., Yoshimori, T., & Kimchi, A. (2008). DAP-kinase is a mediator of endoplasmic reticulum stress-induced caspase activation and autophagic cell death. Cell Death and Differentiation, 15, 1875–1886.

    Article  CAS  PubMed  Google Scholar 

  5. Ravanan, P., Sano, R., Talwar, P., Ogasawara, S., Matsuzawa, S., Cuddy, M., Singh, S. K., Rao, G. S., Kondaiah, P., & Reed, J. C. (2011). Synthetic triterpenoid cyano enone of methyl boswellate activates intrinsic, extrinsic, and endoplasmic reticulum stress cell death pathways in tumor cell lines. Molecular Cancer Therapeutics, 10, 1635–1643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ravanan, P., Srikumar, I. F., & Talwar, P. (2017). Autophagy: The spotlight for cellular stress responses. Life Sciences, 188, 53–67.

    Article  CAS  PubMed  Google Scholar 

  7. Shohat, G., Spivak-Kroizman, T., Cohen, O., Bialik, S., Shani, G., Berrisi, H., Eisenstein, M., & Kimchi, A. (2001). The pro-apoptotic function of death-associated protein kinase is controlled by a unique inhibitory autophosphorylation-based mechanism. Journal of Biological Chemistry, 276, 47460–47467.

    Article  CAS  PubMed  Google Scholar 

  8. Chen, D., Zhou, X. Z., & Lee, T. H. (2019). Death-associated protein kinase 1 as a promising drug target in cancer and Alzheimer’s disease. Recent Patents on Anti-Cancer Drug Discovery, 14, 144–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li, Y., Grupe, A., Rowland, C., Nowotny, P., Kauwe, J. S., Smemo, S., Hinrichs, A., Tacey, K., Toombs, T. A., Kwok, S., Catanese, J., White, T. J., Maxwell, T. J., Hollingworth, P., Abraham, R., Rubinsztein, D. C., Brayne, C., Wavrant-De Vrieze, F., Hardy, J., … Goate, A. (2006). DAPK1 variants are associated with Alzheimer’s disease and allele-specific expression. Human Molecular Genetics, 15, 2560–2568.

    Article  CAS  PubMed  Google Scholar 

  10. Mor, I., Carlessi, R., Ast, T., Feinstein, E., & Kimchi, A. (2012). Death-associated protein kinase increases glycolytic rate through binding and activation of pyruvate kinase. Oncogene, 31, 683–693.

    Article  CAS  PubMed  Google Scholar 

  11. Velentza, A. V., Wainwright, M. S., Zasadzki, M., Mirzoeva, S., Schumacher, A. M., Haiech, J., Focia, P. J., Egli, M., & Watterson, D. M. (2003). An aminopyridazine-based inhibitor of a pro-apoptotic protein kinase attenuates hypoxia-ischemia induced acute brain injury. Bioorganic & Medicinal Chemistry Letters, 13, 3465–3470.

    Article  CAS  Google Scholar 

  12. Pelled, D., Raveh, T., Riebeling, C., Fridkin, M., Berissi, H., Futerman, A. H., & Kimchi, A. (2002). Death-associated protein (DAP) kinase plays a central role in ceramide-induced apoptosis in cultured hippocampal neurons. Journal of Biological Chemistry, 277, 1957–1961.

    Article  CAS  PubMed  Google Scholar 

  13. Carvajal, F. J., Mattison, H. A., & Cerpa, W. (2016). Role of NMDA receptor-mediated glutamatergic signaling in chronic and acute neuropathologies. Neural Plasticity. https://doi.org/10.1155/2016/2701526

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mody, I., & MacDonald, J. F. (1995). NMDA receptor-dependent excitotoxicity: The role of intracellular Ca2+ release. Trends in Pharmacological Sciences, 16, 356–359.

    Article  CAS  PubMed  Google Scholar 

  15. Twayana, K. S., & Ravanan, P. (2018). Eukaryotic cell survival mechanisms: Disease relevance and therapeutic intervention. Life Sciences, 205, 73–90.

    Article  CAS  PubMed  Google Scholar 

  16. Karaman, M. W., Herrgard, S., Treiber, D. K., Gallant, P., Atteridge, C. E., Campbell, B. T., Chan, K. W., Ciceri, P., Davis, M. I., & Edeen, P. T. (2008). A quantitative analysis of kinase inhibitor selectivity. Nature biotechnology., 26, 127–132.

    Article  CAS  PubMed  Google Scholar 

  17. Ghosh, P., Singh, R., Ganeshpurkar, A., Swetha, R., Kumar, D., Singh, S. K., & Kumar, A. (2022). Identification of potential death-associated protein kinase-1 (DAPK1) inhibitors by an integrated ligand-based and structure-based computational drug design approach. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2022.2158935

    Article  PubMed  Google Scholar 

  18. Wilbek, T. S., Skovgaard, T., Sorrell, F. J., Knapp, S., Berthelsen, J., & Stromgaard, K. (2015). Identification and characterization of a small-molecule inhibitor of death-associated protein kinase 1. ChemBioChem, 16, 59–63.

    Article  CAS  PubMed  Google Scholar 

  19. Schuttelkopf, A. W., & van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica. Section D, Biological Crystallography, 60, 1355–1363.

    Article  PubMed  Google Scholar 

  20. Wu, Y., Tepper, H. L., & Voth, G. A. (2006). Flexible simple point-charge water model with improved liquid-state properties. The Journal of Chemical Physics. https://doi.org/10.1063/1.2136877

    Article  PubMed  Google Scholar 

  21. Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N. log (N) method for Ewald sums in large systems. The Journal of chemical physics, 98, 10089–10092.

    Article  CAS  Google Scholar 

  22. Hess, B. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of computational chemistry., 18, 1463–1472.

    Article  CAS  Google Scholar 

  23. Knaggs, M. H., Salsbury, F. R. Jr., Edgell, M. H., & Fetrow, J S. (2007). Insights into correlated motions and long-range interactions in CheY derived from molecular dynamics simulations. Biophysical Journal, 92(6), 2062–2079. https://doi.org/10.1529/biophysj.106.081950.

  24. Jiang, W., Ghosh, D. (2012). Motion and flexibility in human cytochrome p450 aromatase. PLoS One, 7(2), e32565. https://doi.org/10.1371/journal.pone.0032565.

  25. Hart, K. M., Harms, M.J., Schmidt, B. H., Elya, C., Thornton, J. W., & Marqusee, S. (2014). Thermodynamic system drift in protein evolution. PLoS Biology, 12(11), e1001994. https://doi.org/10.1371/journal.pbio.1001994.

  26. Karmakar, T., & Balasubramanian, S. (2016). Molecular Dynamics and Free Energy Simulations of Phenylacetate and CO2 Release from AMDase and Its G74C/C188S Mutant: A Possible Rationale for the Reduced Activity of the Latter. Journal of Physical Chemistry B. 120(45), 11644–11653. https://doi.org/10.1021/acs.jpcb.6b07034.

  27. Tu, W., Xu, X., Peng, L., Zhong, X., Zhang, W., Soundarapandian, M. M., Balel, C., Wang, M., Jia, N., Lew, F., Chan, S. L., Chen, Y., & Lu, Y. (2010). DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell, 140, 222–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors in the manuscript thank Prof. Ramanathan Sowdhamini, National Centre for Biological Sciences for contributing in the discussion part of the manuscript. PT and PR greatly acknowledge the financial support from the Science and Engineering Research Board (YSS/2014/000915/EEQ/2021/000061, respectively).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Priti Talwar or Palaniyandi Ravanan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talwar, P., Singh, P. & Ravanan, P. Structure-Based Virtual Screening and Discovery of New Bi-functional DAPK1 Inhibitors. Mol Biotechnol 66, 876–901 (2024). https://doi.org/10.1007/s12033-023-00744-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00744-9

Keywords

Navigation