Skip to main content

Advertisement

Log in

Hypomethylation-Mediated Upregulation of NFE2L3 Promotes Malignant Phenotypes of Clear Cell Renal Cell Carcinoma Cells

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

This work aimed to study the effect of NFE2 like bZIP transcription factor 3 (NFE2L3) on clear cell renal cell carcinoma (ccRCC) cells and whether NFE2L3 expression was mediated by DNA methylation. Twenty-one ccRCC patients were collected. The gene methylation and expression data of TCGA-KIRC were accessed from TCGA. Candidate methylation driver genes were identified by “MethylMix” package, and finally, NFE2L3 was selected as the target gene. The methylation of NFE2L3 was assayed by Ms PCR and QMSP. mRNA level of NFE2L3 was analyzed by qRT-PCR. Protein level of NFE2L3 was measured by Western blot. Demethylation was performed with methylation inhibitor 5-Aza-2’-deoxycytidine (5-Aza-CdR). Proliferative, migratory, and invasive abilities of ccRCC cells were assayed via cell colony formation assay, scratch healing assay, and transwell assay, respectively. Analysis of TCGA database presented that DNA hypomethylation occurred in the NFE2L3 promoter region in ccRCC tissues. NFE2L3 was significantly upregulated in ccRCC tissues and cells. Its expression in cells treated with 5-Aza-CdR was proportional to the concentration of methylation inhibitor. In cell function experiments, overexpressing NFE2L3 or demethylation could stimulate proliferation, migration, and invasion abilities of ccRCC and normal cells. 5-Aza-CdR treatment rescued repressive impact of knockdown NFE2L3 on malignant phenotypes of ccRCC and normal cells. DNA hypomethylation could induce high expression of NFE2L3 and facilitate malignant phenotypes of ccRCC cells. These results may generate insights into ccRCC therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included within the article.

References

  1. Siegel, R. L., Miller, K. D., & Jemal, A. (2018). Cancer statistics, 2018. CA: A Cancer Journal for Clinicians, 68, 7–30. https://doi.org/10.3322/caac.21442

    Article  PubMed  Google Scholar 

  2. Cohen, H. T., & McGovern, F. J. (2005). Renal-cell carcinoma. New England Journal of Medicine, 353, 2477–2490. https://doi.org/10.1056/NEJMra043172

    Article  PubMed  CAS  Google Scholar 

  3. Shaw, G. (2016). The silent disease. Nature, 537, S98-99. https://doi.org/10.1038/537S98a

    Article  PubMed  CAS  Google Scholar 

  4. Chowdhury, I., Mo, Y., Gao, L., Kazi, A., Fisher, A. B., & Feinstein, S. I. (2009). Oxidant stress stimulates expression of the human peroxiredoxin 6 gene by a transcriptional mechanism involving an antioxidant response element. Free Radical Biology & Medicine, 46, 146–153. https://doi.org/10.1016/j.freeradbiomed.2008.09.027

    Article  CAS  Google Scholar 

  5. Andrews, N. C. (1998). The NF-E2 transcription factor. International Journal of Biochemistry & Cell Biology, 30, 429–432. https://doi.org/10.1016/s1357-2725(97)00135-0

    Article  CAS  Google Scholar 

  6. Chevillard, G., & Blank, V. (2011). NFE2L3 (NRF3): The Cinderella of the Cap’n’Collar transcription factors. Cellular and Molecular Life Sciences, 68, 3337–3348. https://doi.org/10.1007/s00018-011-0747-x

    Article  PubMed  CAS  Google Scholar 

  7. Derjuga, A., Gourley, T. S., Holm, T. M., Heng, H. H. Q., Shivdasani, R. A., Ahmed, R., Andrews, N. C., & Blank, V. (2004). Complexity of CNC transcription factors as revealed by gene targeting of the Nrf3 locus. Molecular and Cellular Biology, 24, 3286–3294. https://doi.org/10.1128/MCB.24.8.3286-3294.2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Braun, S., Hanselmann, C., Gassmann, M. G., Keller, U. A. D., Born-Berclaz, C., Chan, K., Kan, Y. W., & Werner, S. (2002). Nrf2 transcription factor, a novel target of keratinocyte growth factor action which regulates gene expression and inflammation in the healing skin wound. Molecular and Cellular Biology, 22, 5492–5505. https://doi.org/10.1128/MCB.22.15.5492-5505.2002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Xiao, Q., Pepe, A. E., Wang, G., Luo, Z., Zhang, Li., Zeng, L., Zhang, Z., Yanhua, Hu., Ye, S., & Qingbo, Xu. (2012). Nrf3-Pla2g7 interaction plays an essential role in smooth muscle differentiation from stem cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 730–744. https://doi.org/10.1161/ATVBAHA.111.243188

    Article  PubMed  CAS  Google Scholar 

  10. Chevillard, G., Paquet, M., & Blank, V. (2011). Nfe2l3 (Nrf3) deficiency predisposes mice to T-cell lymphoblastic lymphoma. Blood, 117, 2005–2008. https://doi.org/10.1182/blood-2010-02-271460

    Article  PubMed  CAS  Google Scholar 

  11. Masudul Azad Chowdhury, A. M., Katoh, H., Hatanaka, A., Iwanari, H., Nakamura, N., Hamakubo, T., Natsume, T., Waku, T., & Kobayashi, A. (2017). Multiple regulatory mechanisms of the biological function of NRF3 (NFE2L3) control cancer cell proliferation. Scientific Reports, 7, 12494. https://doi.org/10.1038/s41598-017-12675-y

    Article  CAS  Google Scholar 

  12. Gonzalo, S. (2010). Epigenetic alterations in aging. Journal of Applied Physiology, 1985(109), 586–597. https://doi.org/10.1152/japplphysiol.00238.2010

    Article  CAS  Google Scholar 

  13. Wang, Y. P., & Lei, Q. Y. (2018). Metabolic recoding of epigenetics in cancer. Cancer Communications (Lond), 38, 25. https://doi.org/10.1186/s40880-018-0302-3

    Article  CAS  Google Scholar 

  14. Shen, Z., Zhu, L., Zhang, C., Cui, X., & Lu, J. (2019). Overexpression of BHLHE41, correlated with DNA hypomethylation in 3’UTR region, promotes the growth of human clear cell renal cell carcinoma. Oncology Reports, 41, 2137–2147. https://doi.org/10.3892/or.2019.7004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kang, H. W., Park, H., Seo, S. P., Byun, Y. J., Piao, X. M., Kim, S. M., Kim, W. T., Yun, S. J., Jang, W., Shon, H. S., & Ryu, K. H. (2019). Methylation signature for prediction of progression free survival in surgically treated clear cell renal cell carcinoma. Journal of Korean Medical Science, 34, e144. https://doi.org/10.3346/jkms.2019.34.e144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Jie Wang, Hu., Zhao, H. D., Zhu, L., Wang, S., Wang, P., Ren, Q., Zhu, H., Chen, J., Lin, Z., Cheng, Y., Qian, B., Zhang, Yi., Jia, R., Weizheng, Wu., Jun, Lu., & Tan, J. (2019). LAT, HOXD3 and NFE2L3 identified as novel DNA methylation-driven genes and prognostic markers in human clear cell renal cell carcinoma by integrative bioinformatics approaches. Journal of Cancer, 10, 6726–6737. https://doi.org/10.7150/jca.35641

    Article  PubMed  CAS  Google Scholar 

  17. Bury, M., Le Calvé, B., Lessard, F., Dal Maso, T., Saliba, J., Michiels, C., Ferbeyre, G., & Blank, V. (2019). NFE2L3 controls colon cancer cell growth through regulation of DUX4, a CDK1 inhibitor. Cell Reports, 29(1469–1481), e1469. https://doi.org/10.1016/j.celrep.2019.09.087

    Article  CAS  Google Scholar 

  18. Wang, X., Li, Y., Fang, Z., & Li, Y. (2021). Elevated expression of NFE2L3 promotes the development of gastric cancer through epithelial-mesenchymal transformation. Bioengineered, 12, 12204–12214. https://doi.org/10.1080/21655979.2021.2005915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ren, Y., Wang, Y., Hao, S., Yang, Y., Wendong Xiong, Lu., & Qiu, J. T. (2020). Aifa Tang NFE2L3 promotes malignant behavior and EMT of human hepatocellular carcinoma (HepG2) cells via Wnt/betacatenin pathway. Journal of Cancer, 11, 6939–6949. https://doi.org/10.7150/jca.48100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Küppers, R., Klein, U., Schwering, I., Distler, V., Bräuninger, A., Cattoretti, G., Yuhai, Tu., Stolovitzky, G. A., Califano, A., Hansmann, M.-L., & Dalla-Favera, R. (2003). Identification of Hodgkin and Reed-Sternberg cell-specific genes by gene expression profiling. Journal of Clinical Investigation, 111, 529–537. https://doi.org/10.1172/JCI16624

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rhee, D. K., Park, S. H., & Jang, Y. K. (2008). Molecular signatures associated with transformation and progression to breast cancer in the isogenic MCF10 model. Genomics, 92, 419–428. https://doi.org/10.1016/j.ygeno.2008.08.005

    Article  PubMed  CAS  Google Scholar 

  22. Shen, H., & Laird, P. W. (2013). Interplay between the cancer genome and epigenome. Cell, 153, 38–55. https://doi.org/10.1016/j.cell.2013.03.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ren, X., Yang, X., Cheng, B., Chen, X., Zhang, T., He, Q., Li, B., Li, Y., Tang, X., Wen, X., Zhong, Q., Kang, T., Zeng, M., Liu, Na., & Ma, J. (2017). HOPX hypermethylation promotes metastasis via activating SNAIL transcription in nasopharyngeal carcinoma. Nature Communications, 8, 14053. https://doi.org/10.1038/ncomms14053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Viren Amin, R., Harris, A., Onuchic, V., Jackson, A. R., Charnecki, T., Paithankar, S., Subramanian, S. L., Riehle, K., Coarfa, C., & Milosavljevic, A. (2015). Epigenomic footprints across 111 reference epigenomes reveal tissue-specific epigenetic regulation of lincRNAs. Nature Communications, 6, 6370. https://doi.org/10.1038/ncomms7370

    Article  PubMed  CAS  Google Scholar 

  25. Huang, G., Yang, Y., Lv, M., Huang, T., Zhan, X., & Yao, Y. (2021). Jianghou Hou miR-23b-3p Inhibits the oncogenicity of colon adenocarcinoma by directly targeting NFE2L3. Journal of Oncology, 2021, 8493225. https://doi.org/10.1155/2021/8493225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Dai, Y. C., Pan, Y., Quan, M. M., Chen, Q., Pan, Y., Ruan, Y. Y., & Sun, J. G. (2021). MicroRNA-1246 mediates drug resistance and metastasis in breast cancer by targeting NFE2L3. Frontiers in Oncology, 11, 677168. https://doi.org/10.3389/fonc.2021.677168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Feinberg, A. P., & Tycko, B. (2004). The history of cancer epigenetics. Nature Reviews Cancer, 4, 143–153. https://doi.org/10.1038/nrc1279

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to data analysis, drafting, and revising the article, gave final approval of the version to be published, and agreed to be accountable for all aspects of the work.

Corresponding author

Correspondence to Xuhui Liao.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Ethical Approval

The study was approved by the ethics committee of People’s Hospital of Lishui City.

Research Involving Human and Animals Rights

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 85 KB)—Supplementary Figure 1 qRT-PCR detected Caki-1 cells transfection efficiency

12033_2023_727_MOESM2_ESM.tif

Supplementary file2 (TIF 5885 KB)—Supplementary Figure 2 Overexpression of NFE2L3 promotes malignant phenotypes of RPTEC cells. A. qRT-PCR and Western blot detected the mRNA and protein expression of NFE2L3 in transfected RPTEC cells; B. Change in methylation state of NFE2L3 gene in RPTEC cells after transfection; C. Cell colony formation assay detected proliferative ability of RPTEC cells; D. Scratch healing assay detected the migratory ability of RPTEC cells (×40); E. Cell invasion assay detected the invasive ability of RPTEC cells (×100). (* denotes p<0.05)

12033_2023_727_MOESM3_ESM.tif

Supplementary file3 (TIF 7647 KB)—Supplementary Figure 3 Repression of methylation attenuates the tumor suppressive effect caused by NFE2L3 knockdown in Caki-2 cells. A. qRT-PCR detected Caki-2 cell transfection efficiency; B. Western blot detected the protein expression of NFE2L3 in transfected Caki-2 cells; C. Cell colony formation assay detected proliferative ability of Caki-2 cells; D. Scratch healing assay detected the migratory ability of Caki-2 cells (×40); E. Cell invasion assay detected the invasive ability of Caki-2 cells (×100). (* denotes p<0.05)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, X., Liao, Q., Wu, Y. et al. Hypomethylation-Mediated Upregulation of NFE2L3 Promotes Malignant Phenotypes of Clear Cell Renal Cell Carcinoma Cells. Mol Biotechnol 66, 198–207 (2024). https://doi.org/10.1007/s12033-023-00727-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00727-w

Keywords

Navigation